

Lecture Notes in Computer Science 4728
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Symeon Bozapalidis George Rahonis (Eds.)

Algebraic
Informatics

Second International Conference, CAI 2007
Thessaloniki, Greece, May 21-25, 2007
Revised Selected and Invited Papers

13

Volume Editors

Symeon Bozapalidis
George Rahonis
Aristotle University of Thessaloniki
54124 Thessaloniki, Greece
E-mail: {bozapali, grahonis}@math.auth.gr

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.3.1-2, F.4, D.2.1, I.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-75413-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75413-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12168668 06/3180 5 4 3 2 1 0

Preface

CAI 2007 was the 2nd International Conference on Algebraic Informatics. It
was intended to cover the topics of algebraic semantics on graphs and trees,
formal power series, syntactic objects, algebraic picture processing, infinite com-
putation, acceptors and transducers for strings, trees, graphs, arrays, etc., and
decision problems.

CAI 2007 was held during May 21–25, 2007 in Thessaloniki, Greece hosted
by the Department of Mathematics of Aristotle University of Thessaloniki. The
opening lecture was given by Jean Berstel and the other eight invited lectures
by Jürgen Albert, Frank Drewes, Dora Giammarresi, Jozef Gruska, Jarkko Kari,
Oliver Matz, Ulrike Prange (on behalf of Hartmut Ehrig), and Guo-Qiang Zhang.
This volume contains eighth papers of the nine invited lectures and the accepted
papers. We received 29 submissions, the contributors being from 14 countries.
The Program Committee selected ten papers.

We are grateful to the members of the Program Committee for the evaluation
of the submissions and the numerous referees who assisted in this work. We
should like to thank all the contributors of CAI 2007 and especially the honorary
guest and the invited speakers who kindly accepted our invitation to present
their important work. Special thanks are due to Alfred Hofmann, the Editorial
Director of LNCS, who gave us the opportunity to publish the proceedings of
our conference in the LNCS series, as well as to Anna Kramer from Springer for
the excellent cooperation. We are also grateful to the members of the Organizing
Committee and a group of students who helped us with several organizing jobs.
Last but not least we want to express our gratitude to Arto Salomaa for his
constant interest in CAI and his support in Springer.

July 2007 Symeon Bozapalidis

Organization

CAI 2007 was organized by the Department of Mathematics, Aristotle University
of Thessaloniki.

Program Committee

Symeon Bozapalidis, Thessaloniki (Chair)
Manfred Droste, Leipzig
Zoltan Ésik, Szeged/Tarragona
Werner Kuich, Vienna
Antonio Restivo, Palermo
Paul Spirakis, Patras
Heiko Vogler, Dresden

Organizing Committee

Symeon Bozapalidis (Chair)
Archontia Grammatikopoulou
Antonios Kalampakas
Costas Lolas
George Rahonis (Co-chair)

Referees

M. Bartha
S. Bozapalidis
R. Diaconescu
F. Drewes
M. Droste
Z. Ésik
P. Fiser
Z. Gazdag
R. Gentilini
A. Grammatikopoulou
A. Kalampakas
D. Kirsten
W. Kuich

D. Kuske
C. Lutz
A. Maletti
C. Mathissen
O. Matz
I. Maeurer
I. Meinecke
D. Mitsche
T. Mossakowski
F. Z. Nardelli
K. Ogata
A. Pluhar
A. Papistas

P. Pournara
I. Petre
G. Rahonis
A. Restivo
L. Rosaz
A. Sifaleras
P. Spirakis
Gh. Stefanescu
S. Vagvolgyi
H. Vogler
C. Umans

Table of Contents

Invited Papers

On Generalizations of Weighted Finite Automata and Graphics
Applications . 1

Jürgen Albert and German Tischler

Sturmian and Episturmian Words: A Survey of Some Recent Results . . . 23
Jean Berstel

From Tree-Based Generators to Delegation Networks 48
Frank Drewes

Bifinite Chu Spaces . 73
Manfred Droste and Guo-Qiang Zhang

Tiling Recognizable Two-Dimensional Languages . 75
Dora Giammarresi

Algebraic Methods in Quantum Informatics . 87
Jozef Gruska

Recognizable vs. Regular Picture Languages . 112
Oliver Matz

From Algebraic Graph Transformation to Adhesive HLR Categories
and Systems . 122

Ulrike Prange and Hartmut Ehrig

Contributed Papers

Deterministic Two-Dimensional Languages over One-Letter Alphabet . . . 147
Marcella Anselmo and Maria Madonia

Recognizable Picture Languages and Polyominoes . 160
Giusi Castiglione and Roberto Vaglica

An Algebra for Tree-Based Music Generation . 172
Frank Drewes and Johanna Högberg

Aperiodicity in Tree Automata . 189
Zoltan Ésik and Szabolcs Iván

The Syntactic Complexity of Eulerian Graphs . 208
Antonios Kalampakas

VIII Table of Contents

Learning Deterministically Recognizable Tree Series—Revisited 218
Andreas Maletti

The Second Eigenvalue of Random Walks On Symmetric Random
Intersection Graphs . 236

Sotiris Nikoletseas, Christoforos Raptopoulos, and Paul G. Spirakis

Verifying Security Protocols for Sensor Networks Using Algebraic
Specification Techniques . 247

Iakovos Ouranos and Petros Stefaneas

Nonassociativity à la Kleene . 260
Jean-Marcel Pallo

Restarting Tree Automata and Linear Context-Free Tree Languages 275
Heiko Stamer and Friedrich Otto

Author Index . 291

On Generalizations of Weighted Finite

Automata and Graphics Applications

Jürgen Albert and German Tischler

Department of Computer Science, University of Würzburg
Am Hubland, D-97074 Würzburg, Germany

{albert,tischler}@informatik.uni-wuerzburg.de

Abstract. Already computations of ordinary finite automata can be in-
terpreted as discrete grayscale or colour images. Input words are treated
as addresses of pixel-components in a very natural way. In this well un-
derstood context already meaningful operations on images like zooming
or self-similarity can be formally introduced. We will turn then to finite
automata with states and transitions labeled by real numbers as weights.
These Weighted Finite Automata (WFA), as introduced by Culik II,
Karhumäki and Kari, have turned out to be powerful tools for image-
and video-compression. The recursive inference-algorithm for WFA can
exploit self-similarities within single pictures, between colour components
and also in sequences of pictures. We will generalize WFA further to Para-
metric WFA by allowing different interpretations of the computed real
vectors. These vector-components can be chosen as grayscale or colour
intensities or e.g. as 3D-coordinates. Applications will be provided in-
cluding well-known fractal sets and 3D polynomial spline-patches with
textures.

1 Introduction

In standard textbooks on formal languages and automata theory the most com-
mon examples for finite automata deal with the analysis or transformation of
strings, which appear as sequences of input symbols. Real world applications
with finite automata are found e.g. in UNIX tools like grep, lex and many oth-
ers. If it comes to more numerically motivated applications one can find e.g.
counting modulo(k) for some given constant k, or the well-known finite machine
over the input alphabet {(0, 0), (0, 1), (1, 0), (1, 1)} adding two arbitrary long bi-
nary numbers from right to left. But the pumping-lemma also makes clear that
the numerical capabilities of finite state devices are limited e.g. there is no finite
machine computing correctly the product of two arbitrary binary numbers. But,
as we will see in our example later on, it does not take drastic generalizations to
achieve this by some simple weighted automaton.

Before introducing those Weighted Finite Automata we will relate finite ac-
ceptors with concepts from computer graphics (cf. [22]) like pixel-addressing,
zooming, multi-resolution-properties, lossy compression etc. This should pro-
vide a clearer separation of the generalization steps to WFA and Parametric

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 1–22, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 J. Albert and G. Tischler

WFA (PWFA), which inherit much of their descriptive power already from the
finite acceptors.

For the following we will only assume some basic knowledge about finite au-
tomata and elementary mathematics.

2 Finite Acceptors and Raster Images

We will start here with a minimalistic yet powerful approach, where the input-
alphabet is always just Σ = {0, 1}, and the rasterized images consist only of
either black or white picture elements. In our very first step we will even restrict
ourselves to “1-dimensional images” embedded into the unit-interval.

2.1 Inputstrings as Addresses

For some given natural number r ≥ 0 consider all strings in Σr, i.e. all binary
strings of length r. In the 1-dimensional case we can associate an input word
with a half-open interval:

x = b1 b2 . . . br, bi ∈ {0, 1}
H(x) = [0. b1 b2 . . . br, 0. b1 b2 . . . br + 2−r)

of length 2−r within the unit interval [0, 1). This way the string 1011 stands for
the interval [1116 , 12

16). Increasing the length r of the strings by 1 therefore doubles
the number of half-open sub-intervals of the unit interval.

Given any finite automaton A over Σ, some r ≥ 0 and x ∈ Σr, we can assign
the colour black to H(x), iff x is accepted by A, x ∈ L(A); otherwise the colour
white is assigned to H(x).

More formally, we assume the following representation for A=(Q, Σ, M, I, F):

1. Q is a set of n states,
2. Σ = {0, 1} is the binary input alphabet
3. M = (M0, M1), Mi ∈ {0, 1}n×n are the transition matrices for the input-

symbols 0, 1 resp. Here Mi[s, t] = 1 iff there is a transition from state s to
state t labeled by input symbol i

4. I ∈ {0, 1}n×1 is the initial vector. This is a row-vector (and a unit-vector),
where the component for the start-state I[s0] = 1, all others are 0

5. F ∈ {0, 1}1×n is the final column-vector, where a component F [t] = 1 iff the
corresponding state t is a final state.

It should be obvious, that this notation is equivalent to the common definition
of finite automata – i.e. finite state acceptors – if we declare acceptance for A as
follows:

For x = b1 b2 . . . br ∈ {0, 1}r we have x ∈ L(A) iff the function fA : Σ∗ → IN
defined by

fA(x) = I × Mb1 × Mb2 · · · × Mbr × F

yields some value fA(x) > 0.

On Generalizations of WFA and Graphics Applications 3

0

10

0, 1

q

q

q

1

2 3

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

0 1

0
0
0
0

1
1
1
1

.
0
1
0
0

1
0
0
0

1
1
0
0

.

Fig. 1. Graph for A and input sequences of length 4

2.2 Image Generation by Finite Acceptors

Let us demonstrate the usefulness of this notation by the following finite au-
tomaton A = (Q, Σ, M, I, F), where

1. Q = {q1, q2, q3},
2. Σ = {0, 1},
3. the initial vector I = (1, 0, 0),
4. the final vector FT = (1, 0, 0),
5. and for M = (M0, M1) we have the transition matrices:

M0 =

⎛
⎝

0 1 0
1 0 0
1 0 0

⎞
⎠ , M1 =

⎛
⎝

0 0 1
1 0 0
0 0 0

⎞
⎠.

The language accepted by this automaton is L(A) = {00, 01, 10}∗, as can be
seen easily from the transition-graph for A (cf. Fig. 1).

For the input string 1011 our function fA yields fA(1011) = I × M1 × M0 ×
M1×M1×F = 0. By our convention, since 1011 is not accepted by A, the colour
white is assigned to the interval [1116 , 12

16). On the other hand the string 1000 is
accepted, fA(1000) = I × M1 × M0 × M0 × M0 × F = 1, and [8

16 , 9
16) is painted

black. (cf. Fig. 1).
If we look at the pattern of intervals for all words it is easy to see that for all

odd lengths r of the input nothing is accepted and for r = 0, 2, 4, 6, . . . we can
describe this informally as dividing all black intervals of stage r into four equal
half-open parts and painting the last one white to arrive at stage r + 2.

This sounds of course very familiar if compared to the construction of the
well-known Cantor set C, frequently called “Cantor dust” as well. Starting with
the closed unit interval [0, 1] successively remove the middle thirds (as open
intervals):

G0 = [0, 1]

G1 = [0,
1
3
] ∪ [

2
3
, 1]

G2 = [0,
1
9
] ∪ [

2
9
,
1
3
] ∪ [

2
3
,
7
9
] ∪ [

8
9
, 1]

. . .

4 J. Albert and G. Tischler

Then the Cantor set C is defined as

C =
∞⋂

n=1

Gn,

where C is compact, has Lebesgue-measure 0 and frequently serves as a funda-
mental example of a fractal. So, it is no surprise that our example automaton A
also shows fractal patterns. This will become even more apparent, if we change
our interpretation of input words for A from 1-dimensional to 2-dimensional
addresses.

2.3 Bi-level Images in 2D

The hierarchical form of addressing introduced above is generalized easily from
the unit interval to the unit square [0, 1)×[0, 1), and further to any d-dimensional
hypercube [0, 1)d, d ≥ 1. The so-called Morton- or Z-order can achieve this
desired hierarchical addressing in a very natural and intuitive way. Fig. 2 shows
the numbering sequences for the unit square and address lengths of 2, 4 and 8.

a) b) c)

Fig. 2. Morton-Order (Z-Order)

In the common raster-scan-order pixels are arranged in a rectangular matrix
and visited row-wise starting in the upper left corner. Thus, the Z-order at least
matches with the raster-scan for the very first and last pixel. Depending on the
applications it might be more favorable that the origin of the image is placed
in the lower left corner e.g. to display graphs of functions or relations in the
common way. Thus, the Morton-order might also become an N-order.

For our example of the finite automaton A above, it should be noted that
we do not have to change anything within the definition or computation of the
results to apply the 2D-interpretation to the addresses. Now the sequence 1011
leads into the white square [34 , 1) × [14 , 1

2) and analogously 1000 into the black
square [12 , 3

4) × [0, 1
4). The corresponding pictures are given in Fig. 3 for the res-

olutions of 22 × 22 and 28 × 28 pixels. Thus, our example automaton generates
the well-known Sierpinski-triangle.

On Generalizations of WFA and Graphics Applications 5

1

0 1 0 1

1

Fig. 3. Images generated by A of resolution 4 × 4 and 256 × 256

0

0

1

1

0

1

000011

000000 000001

000010

000100 000101

000110 000111

001000 001001

001010 001011

001100 001101

001110 001111

010000 010001

010010 010011

010100 010101

010110 010111

011000 011001

011010 011011

011100 011101

011110 011111

100000 100001

100010 100011

101010 101011

100100 100101

100110 100111

101000 101001 101100 101101

101110 101111

110000 110001

110010 110011

110100 110101

110110 110111

111000 111001

111010 111011

111100 111101

111110 111111

Fig. 4. Hierarchical addressing by bintrees

2.4 Bintrees for Addressing

In the 2D-interpretation an input-sequence of length 2r addresses a square of size
2−r × 2−r, and a sequence of length 2r + 1 then a rectangle of size 2−r−1 × 2−r,
as shown in Fig. 4 for r = 6.

The hierarchical and fractal nature of the Morton-order is apparent in repre-
senting the addresses in complete binary trees (or bintrees) of depth 2r.

It is verified easily, that the hierarchical addressing works with the bit-wise
interleaving of the x- and y-coordinates. Again, if we assume the origin of the
image at the upper left corner, then any input address for a square of size
2−r×2−r like w = y1 x1 y2 x2 ... yr xr is found at the coordinates x = x1 x2 ... xr ,
y = y1 y2 ... yr.

Since each node of the bintree represents the image given by its leaves, zooming
into this sub-image quite naturally can be associated with removing the common
prefix-string u from all the pixel-addresses uv of that sub-image.

Returning to our example for the Sierpinski triangle we can convince ourselves
also, that the concept of multi-resolution makes sense for images defined by finite
acceptors. We can use the image of size 2r × 2r pixels, scale it by one half in
each dimension and place a copy into each of the three first sub-quadrants of the
image with 2r+1 × 2r+1 pixels. These steps of scaling and copying are used as
an intuitive description for a basic form of fractal image generation (see [39]);

6 J. Albert and G. Tischler

Fig. 5. Dithering and Inverting

similar approaches are found in [31], [32]; a theoretical discussion of the concepts
can be found in [37].

The reader is invited to generate as an exercise variations of the Sierpinski
triangle automaton for the diagonal line in the unit square and the upper left
black triangle.

Some more detailed remarks are in order here: Though quadtrees, octtrees,
etc. are found more frequently in literature for hierarchical addressing of higher-
dimensional data ([3], [14]), bintrees have measurable advantages for image- and
video-compression. The Morton-order is superior in general to the raster-scan
addressing, since it can exploit spatial redundancies much better. The Hilbert-
order, where only direct neighbour pixels are visited during the traversal, can be
the preferred traversal-order, if spatial redundancies without directional bias are
present in the raw data. It should be noted, that the Hilbert-order is self-similar
and hierarchical too and can be mapped to the Morton-order by a simple finite
state transduction. Many other variations of the traversal-order exist, like the
Hilbert-Peano-order, the triangular or the circular order, which can serve for
special applications.

Another meaningful operation for the graphical interpretation of regular lan-
guages is of course the complementation Σ∗ − L(A), which yields for any fixed
resolution just the inverted pixel values.

The example displayed in Fig. 5 also shows the effects of dithering, which is
frequently used in the printing processes to create the illusion of a greater colour-
depth or – as in our case now – higher number of available grayness values.

2.5 Bit-Planes for Grayscale and Colour-Images

Whereas in the multi-resolution hierarchy for black and white images we can
possibly see the same patterns in different sizes, we consider now short stacks
of images of the same resolution. In many image formats which are frequently
called “raw formats” each pixel-value with its components is stored in a fixed

On Generalizations of WFA and Graphics Applications 7

. . .

Fig. 6. Most significant, second significant and least significant bit-plane for 512×512
grayscale image lena

number of bits. These are often 8 bits for gray and 24 for colour images or even
32 bits if transparency values are specified for the pixel positions. The red, green
and blue component is usually coded in 8 bits then. Each of the bit-positions
thus defines a separate bit-plane and if the bit sequences are intensity values
coded in binary the positions range from the “Most Significant Bit”, MSB, to
the “Least Significant Bit”, LSB.

Therefore, the whole image is representable as some stack of bilevel images
(see Fig. 6). And since for any given image of finite resolution there is only a
finite amount of bitplanes and bits to be coded, it is obvious, that finite state
acceptors are sufficient in principle for the representation of common digital
images. We can, for example, interpret the complete bintrees discussed above as
transition graphs for those finite state acceptors. Starting with such a bintree
for a bilevel image one can reduce the number of states by the classical state
minimization algorithm, which will produce some directed acyclic graph (DAG).
Remember that all accepted words are addresses of same length. Instead of
starting out with complete bintrees it is usually better to begin with so-called
region bintrees, where an inner node becomes a final node, if all the leaves in that
subtree are final. For this region bintree again the state minimization algorithm
can be applied. These approaches can be viewed as rough sketches for the WFA
inference algorithm, where pictures consist of real-valued pixels and transitions
in the finite automaton carry real-valued weights.

Several compression algorithms for the whole stack of bit-planes have been
developed in the past for lossless and lossy image reproduction. For cartoon-
like images with only a few different colours these can simply be variations of
runlength-encoding or in the general case also sophisticated predictive methods,
where considering several neighbouring bit-planes for encoding bitvalues can be
employed as in the JBIG-standard ([27]). Lossy compression methods can take
advantage of the fact that the bit-planes of the LSB or near to it mostly carry
noise and can be neglected in the coding-process.

A totally different approach can be taken by following the contours of shapes
in the style of turtle-graphics as picture defining languages. Even then many
self-similarities occur, which can be exploited by WFA-variants, see [7], [33].

8 J. Albert and G. Tischler

3 Weighted Finite Automata

Although definitions of finite automata, where transitions are labeled by real
numbers can be found in the classical textbooks on formal language theory like
[1], this was mainly for the purposes of describing probabilistic behavior of finite
state acceptors or for the study of formal power series ([2], [28]). The gen-
eration of digitized images from finite automata appears later in [3] and then
in [5], [6], [9], where a recursive WFA-inference algorithm with remarkable
compression-results had been presented. Since then several improvements have
led to competitive WFA-codecs with performance-figures in general superior to
the JPEG image compression standard ([35]) and depending on image charac-
teristics on a par with advanced wavelet codecs like embedded zerotree wavelet
coding ([8]) or the renowned JPEG2000 standard ([36]). Especially, Daubechie
wavelets, which are used in several successful image compression schemes, are
also generated by WFA with a small number of states as shown in [24]. Due to
the simple mathematical structure of the WFA approximation, the image recon-
struction can also be done faster than in wavelet based codecs which have to
rely on a fast inverse wavelet transform. This makes the WFA-approach a good
choice for low bit-rate image and video coding ([10], [11], [12]).

In the following we will present the standard Weighted Finite Automata as an
extension of our previous vector-/matrix-notation of finite state acceptors. We
refer the interested reader to [5], [34], [13] and [23] for a more rigorous mathe-
matical treatment and especially for fundamental results about the families of
real-valued functions that can be generated by WFA.

We define A = (Q, Σ, W, I, F) to be a (standard) n state, k label Weighted
Finite Automaton (WFA), if for some n, k ∈ IN

1. Q is a set of n states, in general numbered from 1 to n,
2. Σ = {0, 1, ..., , k − 1} is an input alphabet with k labels
3. W = (W0, W1, . . .Wk−1), Wi ∈ IRn×n are the weight matrices for transitions

and the input-symbols 0, 1, . . . k − 1 resp. Here Wi[s, t] has a non-zero value
iff there is a transition from state s to state t labeled by input symbol i with
weight Wi[s, t]

4. I ∈ IRn×1 is the initial distribution.
5. F ∈ IR1×n is the final distribution.

Each matrix Ai corresponds to one label i. In addition, two n-dimensional
vectors, I and F , called the initial and final distribution vectors, are given. The
initial distribution vector is a row-vector (i.e., has size 1 × n) and the final
distribution vector is a column vector (of size n × 1).

Formally, WFA A assigns a real number to each word over the label alphabet
Σ = {0, 1, . . . , k − 1}. The value associated to word w = i1i2 . . . il is

fA(i1i2 . . . il) = I × Wi1 × Wi2 × · · · × Wil
× F.

To simplify notation let us denote by Aw the corresponding product Ai1 ×Ai2 ×
· · · × Ail

where w = i1i2 . . . il. Now we can write:

fA(w) = I × Aw × F.

On Generalizations of WFA and Graphics Applications 9

For our first introductory WFA example we refer to the well-known fact, that
there does not exist a finite automaton (or finite machine) correctly multiplying
pairs of arbitrary long binary numbers.

We consider the following WFA A with four states,
input alphabet Σ = {0, 1},
initial distribution I = (0.0, 0.0, 0.0, 1.0),
final distribution FT = (1.0, 0.5, 0.5, 0.25)
and the weight matrices

W0 =

⎛
⎜⎜⎝

1.0 0.0 0.0 0.0
0.0 0.0 0.5 0.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.5

⎞
⎟⎟⎠ , W1 =

⎛
⎜⎜⎝

1.0 0.0 0.0 0.0
0.5 0.0 0.5 0.0
0.0 1.0 0.0 0.0
0.0 0.5 0.0 0.5

⎞
⎟⎟⎠

The transition graph in Fig. 7 reveals some simple underlying (weakly)
monotonous structure of the transition directions, with state number 4 depicted
on top as the unique start-state according to the initial distribution I.

For any natural number r ≥ 0 and the binary values x = 0. x1 x2 ... xr ,
y = 0. y1 y2 ... yr with xi, yi ∈ {0, 1} fA(w) = x × y is computed for the input
sequence w = x1 y1 x2 y2 ... xr yr with its given resolution.

It should be mentioned that we here actually compute the average values for
the half-open x- and y-intervals of length 2−r; thus, in fact we only approximate
the function value for the infinite inputs:
x = 0. x1 x2 ... xr000... ,
y = 0. y1 y2 ... yr000... .

This choice for our final distribution vector FT = (1.0, 0.5, 0.5, 0.25) nicely
supports the multi-resolution property of our WFA, which is good for displaying
the function-graph. Choosing FT = (1.0, 0.0, 0.0, 0.0) instead would yield the
appropriate interpretation for the finite product of x = 0. x1 x2 ... xr and
y = 0. y1 y2 ... yr.

In Fig. 7 please note that here the origin of the square is in the lower left
corner and hence the interleaving of the x- and y-coordinates in w starts with x.
For better visibility of fA(·) the contour lines in the second picture the grayness
values are spread cyclically over the range [0, 1].

3.1 WFA and Polynomials

The transition graph in Fig. 7 deserves some closer inspection w.r.t. to the
functions represented by the remaining states. Which functions fi(x, y) will be
generated, if we exchange the initial distribution I = (0.0, 0.0, 0.0, 1.0) by I1 =
(1.0, 0.0, 0.0, 0.0), I2 = (0.0, 1.0, 0.0, 0.0) or I3 = (0.0, 0.0, 1.0, 0.0) resp.?

The answer for I1 trivially is the constant function f1(x, y) = 1 and given the
interleaving of x and y in w it is not hard to see that we have f2(x, y) = x and
f3(x, y) = y, the linear slopes in x- and y-direction.

This observation has been made in the early paper by Culik and Karhumäki
(see [13]) and generalized to the family of all real-valued polynomials. The

10 J. Albert and G. Tischler

Fig. 7. fA(w) = x × y, WFA and function-values with cyclically shifted grayness
contour lines

corresponding transition graphs for polynomials over a single variable x ∈ [0, 1)
are so-called line-automata. For any polynomial p(x) of degree n at most n + 1
states are needed in a WFA to compute p(x). More precisely spoken, for any
x0 ∈ [0, 1) p(x0) can be approximated with arbitrary precision.

Let x1 = 0.b1b2 . . . bm ∈ {0, 1}m and x2 = 0.b2b3 . . . bm ∈ {0, 1}m−1. Intu-
itively spoken, x1 is x2 shifted to the right with 1

2b1 added. Then

x1
n =

(1
2 (b1 + x2)

)n

= 1
2n

∑n
i=0

(
n
i

)
bn−i
1 xi

2
(1)

which means

x1
n =

{ 1
2n xn

2 for b1 = 0
1
2n xn

2 + 1
2n

∑n−1
i=0

(
n
i

)
xi

2 for b1 = 1
(2)

Since in the binomial formula only powers of x of the same or of lower degrees
are needed for the computation, this implies the afore-mentioned structure of the
line-automata. From numerical mathematics it is well-known that polynomials
are very well suited for interpolations and approximations of functions which are
“reasonably smooth”. So this is a good start-point for applications of WFA in
lossy image compression.

On Generalizations of WFA and Graphics Applications 11

Also in some other respect WFA-generated functions and polynomials are in-
timately connected. It was shown in [13] and [23] that the polynomials are the
only smooth functions generated by WFA, where “smooth” now means that all
derivations exist everywhere in the domain. This rules out – somehow surpris-
ingly – also the square-root-function for which was shown in [26], that it can be
matched by WFA-generated functions extremely well.

We will return to the topics of the square-root and the applications of higher-
dimensional polynomials in our next chapter on the more general concepts of
Parametric WFA.

3.2 Image- and Video-Compression with WFA

The above sections have shown that Weighted Finite Automata and even the
classical finite acceptors are interesting mechanisms for the generation of images,
be it bilevel, grayscale or colour.

Now we will turn to the question of WFA-inference and image-compression,
i.e. given some image, effectively find a small WFA A whose function fA(·)
approximates the image well. For simplicity we assume that the given image is
grayscale of some resolution of 2k × 2k pixels. This is no severe restriction since
any colour image can be treated then as three grayscale images for the red, green
and blue component. Furthermore, other resolution sizes can e.g. be embedded
in some picture size 2r × 2r for some suitable r ≥ 0, when the unused pixels
are left black. We will give a brief sketch of the inference algorithm invented by
Culik and Kari in 1993 and refer to the seminal papers [5], [6], [25] and [9] for
the implementation details and the remarkable test-results.

One can imagine that the inference algorithm reduces the bintree for the
grayscale image wherever a sub-image belonging to an inner node of the tree
can be approximated well. The algorithm is initialized with a small set of ba-
sis functions (e.g. the constant and the linear functions) and the entire image,
correspondingly the root node of the bintree.

Two different approximation methods are tested recursively for every sub-
node. First the block is approximated with a linear combination of the images
which are available up to now.

In the alternative method the current sub-image is subdivided into halves,
which means visiting the two sub-nodes, where the coder tries to find good
approximations for the new smaller sub-images. After the recursion has returned
from the subtrees both alternatives are compared and the better one is used.

The local decision, whether to subdivide further or to approximate by a linear
combination, is evaluated by some cost-function C; C takes into account the
errors produced by the current approximations versus the storage costs (counted
in the number of bits to be used). Therefore, C uses a global parameter q to
control the efficiency of the encoding process. Depending on the user-settings
large values of q will produce better approximations while small values will
produce high compression ratios.

In Fig. 8 the result of the inference algorithm is depicted as the set of image
regions for which the cost-function decided that a linear combination was more

12 J. Albert and G. Tischler

Fig. 8. Image regions of the bintree coded as linear combinations in a WFA

Fig. 9. Capturing motion in bintree decompositions

favorable than subdividing the current image. In this case the setting of the
parameter q was aimed at a high compression rate. For low error rates it would
be quite common to have several hundred or even thousands of states in the
resulting WFA.

The next figure (Fig. 9) explains that these encoding principles can be carried
over to the compression of sequences of pictures, i.e. video-clips. The “temporal
redundancies” are modelled by so-called macro-blocks and motion-vectors (as in
the MPEG-standards). One tries to find parts of the picture, which have been
moved to nearby locations as a whole block. The translation of such a block
is not much different from a linear combination in the approximation process.
Thus, an encoding of the WFA inference algorithm produced quite satisfying
results, especially for higher compression rates ([11]), [12]).

On Generalizations of WFA and Graphics Applications 13

4 Parametric Weighted Finite Automata

As could be seen in the sections above the addressing of pixel-positions by input-
sequences for (weighted) finite automata is a very powerful and flexible way to
generate pictures and even video-clips. We will generalize now the way input
words can represent pixel positions. Informally, instead of using the fixed binary
(or k-ary) address representation we allow that pixel positions are also computed
by some WFA ([15]).

We call these automata Parametric Weighted Finite Automata, or PWFA for
short, because the input string acts as a parameter binding the functions for
different dimensions together. Instead of computing single real values to input
strings, in Parametric Weighted Finite Automata we can get points of higher
dimensional real spaces IRd. To do that, we have to change only one item in
the definition for WFA, namely our initial distribution vector which becomes an
initial distribution matrix of size n × d for some d > 0.

The quintuple A = (Q, Σ, W, I, F) is an (n state, k label, d-dimensional)
Parametric Weighted Finite Automaton (PWFA), if for some n, k, d ∈ IN

1. Q is a set of n states, in general numbered from 1 to n,
2. Σ = {0, 1, ..., , k − 1} is an input alphabet with k labels,
3. W = (W0, W1, . . .Wk−1), Wi ∈ IRn×n are the weight matrices for transitions

and the input-symbols 0, 1, . . . k−1 resp. Wi[s, t] has a non-zero value iff there
is a transition from state s to state t labeled by input symbol i with weight
Wi[s, t],

4. I ∈ IRn×d is the initial distribution matrix,
5. F ∈ IR1×n is the final distribution.

The transition diagram for A is the same as for WFAs with the exception that
inside every node d initial distribution values and one final distribution value are
inserted.

Now each input string w = i1i2 . . . il ∈ Σ∗ leads to a point in the d-dimensional
space IRd. The formula to compute fA(w) looks exactly as in the case of WFA,
though we now use an initial distribution matrix I of size n × d:

fA(w) = I × Aw × F.

For the given PWFA A over the alphabet Σ let Sn(A) denote the set of
points computed by A on inputs of length n, and let S≥n(A) be the set of points
computed on inputs of length at least n:

Sn(A) = {fA(w) | w ∈ Σn}

S≥n(A) =
∞⋃

i=n

Si(A)

14 J. Albert and G. Tischler

Now there are several options how topologically closed sets can be associated
to PWFA. We will use as definition that the set S(A) computed by a PWFA A
is

S(A) =
∞⋂

n=0

S≥n

where S≥n is the topological closure of S≥n. In other words, a point x ∈ IRd (“a
real-valued vector”) is in S(A) if either
(i) there exist infinitely many words w such that fA(w) = x, or
(ii) there exist points fA(w) �= x arbitrarily close to x.

At first glance this might look overly complicated, compared to the simple
cumulative approach, where one could define the set S(A) of points associated
to a PWFA A as

S(A) =
∞⋃

i=0

Si(A)

But it turns out quickly that the second option is weaker in the sense, that
any resulting set of points S(A) can be generated as S(B) by some PWFA B
under the first option. Technically spoken, all one has to do is to introduce a new
label, which is used for “waiting loops” in each automaton state. The chosen first
option also has the flavour of an attractor set in the context of fractals, which
is useful as well.

Multidimensional sets given by a Parametric WFA can be interpreted as re-
lations or images in many different ways. If d = 2 it is natural to interpret
points (x, y) as points of the Euclidean plane, so S(A) becomes a bilevel im-
age. In case d = 3 we might have a set of points (x, y, z) of a 3D-object, a
description of pixel locations x, y and intensities i of a 2D image, or a descrip-
tion of a moving 2D bilevel object where the third dimension is interpreted as
the time coordinate. Case d = 4 could be a description of a 3D grayscale ob-
ject, or a 2D grayscale video etc. In all cases, decoding consists of computation
of d-dimensional points, followed by their interpretation. This new degree of
freedom by separating generation of real values from their interpretation as co-
ordinates or (colour-)intensities yields a high descriptional power and can lead to
extremely compact representations. PWFA-applications include up to now e.g.
representations of multidimensional wavelets ([16]), shapes of figures ([18]) and
3D-animations ([19]).

4.1 PWFA over a Unary Alphabet

Since WFA over a unary alphabet do not define useful functions, it may not be
clear, what can be expected from PWFA over a single label 0.

Consider the following one-label, two-states PWFA C and its transition graph
in Fig. 10.

The corresponding weight matrix A0 defines a rotation of the plane IR2 by
the angle α = cos−1(0.8). The quotient of α and π is irrational, so iterating the
rotation always finds unvisited points of the circle.

On Generalizations of WFA and Graphics Applications 15

0, 1
1

0 (0.8) 0 (0.8)

0 (-0.6)

0 (0.6)

1, 0
0

Fig. 10. Rotation by cos−1(0.8)

(a) (b)

Fig. 11. (a) First 50 points of the circle, (b) the full circle S(A)

When the rotation is applied to the final distribution point (1, 0) over and
over again the unit circle gets drawn. Therefore,

S(A) = {(x, y) | x2 + y2 = 1} = {(cos(t), sin(t)) | t ∈ IR}.

Please note that in this case both options to define the set of points for the
PWFA C coincide:

S(C) =
∞⋂

n=0

S≥n

S(C) =
∞⋃

i=0

Si(C)

This holds true since each point in Si(C) is also an accumulation point in
S≥n, which is due to the irrationality of the quotient α/π and the true rotation
(0.82 + 0.62 = 1).

The two options would differ obviously, if we replace each occurrence of 0.8 in
the weight matrix above by say 0.79. S(C) would yield a spiral towards the origin,
but S(C) would just consist of the origin, since there is no other accumulation
point or any other point visited infinitely often.

The unary alphabet case for PWFA produces a genuine subfamily of the
PWFA generated set. It has been characterized by decidability results and clo-
sure properties. Furthermore, the number of labels in Σ do not span a hierarchy,

16 J. Albert and G. Tischler

two labels actually suffice. On the other hand, the number of states gives rise
to an infinite hierarchy, as can be concluded from the facts about the set of
polynomials of true degree m ≥ 0.

4.2 Simulation of Iterated Function Systems

Consider any Iterated Function System (IFS) with k contractive affine maps of
IR2. A PWFA simulating the IFS needs k labels, one label corresponding to each
affine transform. Two states are needed to represent the x- and y-coordinates.
In the more general case of a d-dimensional IFS we would use here d states. And
in addition, one state is included to represent the constant function.

For example, the well-known dragon is generated by the following 3-state,
2-label PWFA shown in Figure 12:

Fig. 12. Simulating IFS for dragon

PWFA are strictly more powerful generators than IFS and one can show that
their family coincides with the more general Mutual Recursive Function Systems
(MRFS) [4].

4.3 Curves and Segments with Parametric Polynomial
Representation

If each of the d functions computed by a PWFA is a polynomial, we can produce
a very compact automaton for the corresponding polynomial curve in IRd.

For example, consider the 4-state, 2-label, 2-dimensional PWFA P as given
in Fig. 13. It has initial distributions (1, −1, 0, 0) and (0, 1, −1, 0), if the states
are numbered from left to right.

On Generalizations of WFA and Graphics Applications 17

1 (0.125)

1 (0.25)1 (0.375)

1 (0.375) 1 (0.5) 1 (0.5)

0,1 (1.0)

1/4 1
0, 00, -1

1/2
-1, 1

1/3
1, 0

0,1 (0.125) 0,1 (0.25) 0,1 (0.5)

Fig. 13. Parametric WFA for {(t3 − t2, t2 − t) | 0 ≤ t ≤ 1}

In the standard binary representation of a WFA the four states – from left
to right – would compute the functions f(t) = t3, t2, t and 1 over the interval
[0, 1), respectively. Let us interpret now the two dimensions of the Parametric
WFA P as the x- and y-coordinates of points. Then the given PWFA computes
the points of the curve segment as shown in the first image in Fig. 14. More
precisely, the pixels computed by the PWFA approach this set of points as the
lengths of the input words increase.

The second image is also generated by a PWFA, which essentially holds two
copies of the PWFA P , three extra labels plus two helper states. Then for
two points on the curve of P the line between those points is gradually filled
with black pixels in some random (fractal) fashion. For the displayed picture
the computation was stopped intentionally to leave some pixels of the interior
untouched.

Fig. 14. Polynomial curve, filling the interior

18 J. Albert and G. Tischler

We had mentioned already that any polynomial p(x) of degree m can be
computed by a standard one-dimensional WFA with m + 1 states, as shown in
[13]. Therefore, any d-dimensional curve

{(p1(t), p2(t), . . . , pd(t)) | 0 ≤ t ≤ 1}
with parametric representation using the polynomials p1(t), p2(t), . . . , pd(t) is
computable by a PWFA. Furthermore, if the highest degree of the polynomials
p1(t), p2(t), . . . , pd(t) is m, the PWFA will only need m + 1 states again.

4.4 Spline Curves and 3D-Patches

For many practical purposes it is essential, that a set of single points (say in the
plane IR2) can be represented or approximated by smooth curves. Frequently
the sets of points are segmented into small groups and cubic polynomials are
employed for the local approximation. This piecewise approach normally requires
some smoothness conditions at the segment-borders, i.e. function values and
derivations up to a given degree have to match at the borders.

Fig. 15. Smooth curves from parabola chunks

The example presented in Fig. 15 uses a chunk of a quadratic parabola and
some affine transformation to put the pieces together in a smooth way. This can
be done with a PWFA with just 9 states and 2 labels.

In a more general set-up figures in the plane (like drawings of animals, font
letters, . . .) can be approximated by following their contours with polynomial
splines. This has been studied in [17] and [18] for the cases of Catmull-Rom-
splines, B-splines and Bezier-curves ([21], [20], [40]).

The next step to represent polynomial surfaces in 3D is then close at hand.
Working with the popular Bezier-spline surfaces requires grids of control points.
Those grids can be derived from the 2D cases in a canonical fashion as in Fig. 16.
For an eighth of a sphere-surface, actually an approximation thereof, this grid is
shown here. To combine eight of these (rotated) patches for a complete sphere
is easy then.

On Generalizations of WFA and Graphics Applications 19

Fig. 16. Bezier patch for sphere approximation

If we like to have such 3D-patches covered by some texture, we can employ
the WFA inference algorithm to generate an approximation of the given texture-
image from a weighted finite automaton which we include in our PWFA. There
we still have to solve the problem to assign a pixel-value at a given position to
some voxel of that patch, but this is not too hard within the mechanics of the
PWFA. Fig. 17 shows the result of compressing the map by a WFA and applying
the corresponding WFA to the complete sphere consisting of 8 Bezier-patches.

Fig. 17. Building and texturing the Bezier sphere

5 Conclusions and Open Problems

For finite acceptors and their extensions as Weighted Finite Automata and Para-
metric WFA several relations to graphics applications have been demonstrated

20 J. Albert and G. Tischler

here. Whereas WFA are nowadays pretty well understood and have efficient in-
ference algorithms, this cannot yet be stated for PWFA. Up to now PWFA have
been studied with respect to inclusion properties and decidability questions and
a small number of hopefully interesting “hand-made” examples have been pro-
vided. For practical applications the important question is whether the WFA
inference algorithm can be extended to PWFA or at least to some interesting
sub-families of PWFA. The efficiency for the representation of 3D-spline-patches
could be such an interesting topic for a PWFA-sub-family.

For some of the published examples of PWFA it seemed essential, that irra-
tional weights can be employed. In a strict sense it is arguable here, whether
the attribute “finite” is indeed justified for those Parametric Finite Automata,
since we do not generate the irrational number by some kind of finite state de-
vice. There are results on language families and decidability questions for Integer
Weighted Finite Automata by Halava and Harju ([29], [30]), but PWFA with
rational weights should still be studied in detail.

And we look forward to numerous applications of PWFA in augmented reality,
e.g. animated 3D-objects.

References

1. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, New
York (1974)

2. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Springer, Heidelberg (1978)

3. Berstel, J., Nait Abdullah, A.: Quadtrees generated by finite automata. In: AFCET
61-62, pp. 167–175 (1989)

4. Culik, K., Dube, S.: L-systems and mutually recursive function systems. Acta In-
formatica 30, 279–302 (1993)

5. Culik, K., Kari, J.: Image compression using weighted finite automata. Computers
and Graphics 17(3), 305–313 (1993)

6. Culik II, K., Kari, J.: Image-data compression using edge-optimizing algorithm
for wfa inference. Journal of Information Processing and Management 30, 829–838
(1994)

7. Culik II, K., Valenta, V.: Finite automata based compression of bi-level and simple
color images. Computers and Graphics 21, 61–68 (1997)

8. Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE
Transactions on Signal Processing 41(12), 3445–3462 (1993)

9. Kari, J., Fränti, P.: Arithmetic coding of weighted finite automata. Theoretical
Informatics and Applications 28(3-4), 343–360 (1994)

10. Hafner, U.: Refining image compression with weighted finite automata. In: Storer,
J.A., Cohn, M. (eds.) Proc. Data Compression Conference, pp. 359–368 (1996)

11. Hafner, U.: Image and video coding with weighted finite automata. In: Proc. of the
IEEE International Conference on Image Processing, pp. 326–329. IEEE Computer
Society Press, Los Alamitos (1997)

12. Hafner, U., Albert, J., Frank, S., Unger, M.: Weighted finite automata for video
compression. IEEE Journal on Selected Areas in Communications 16(1), 108–119
(1998)

On Generalizations of WFA and Graphics Applications 21

13. Culik, K., Karhumäki, J.: Finite automata computing real functions. SIAM J.
Comput. 23(4), 789–814 (1994)

14. Fisher, Y.: Fractal image compression with quadtrees. In: Fisher, Y. (ed.) Fractal
Image Compression, pp. 55–77. Springer, Heidelberg (1995)

15. Albert, J., Kari, J.: Parametric Weighted Finite Automata and Iterated Function
Systems. In: Proc. Fractals in Engineering, Delft (1999)

16. Tischler, G., Albert, J., Kari, J.: Parametric Weighted Finite Automata and Mul-
tidimensional Dyadic Wavelets. In: Proc. Fractals in Engineering, Tours, France
(2005)

17. Tischler, G.: Properties and Applications of Parametric Weighted Finite Automata.
JALC 10(2/3), 347–365 (2005)

18. Tischler, G.: Parametric Weighted Finite Automata for Figure Drawing. In: Do-
maratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317,
pp. 259–268. Springer, Heidelberg (2005)

19. Tischler, G.: Refinement of Near Random Access Video Coding with Weighted
Finite Automata. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094,
pp. 46–57. Springer, Heidelberg (2006)

20. De Boor, C.: A practical guide to splines. Springer, Heidelberg (1978)
21. Catmull, E., Rom, R.: A class of local interpolating splines, Computer Aided Ge-

ometric Design, pp. 317–326. Academic Press, London (1974)
22. Pavlidis, T.: Algorithms for Graphics and Image Processing. Computer Science

Press (1982)
23. Droste, M., Kari, J., Steinby, P.: Observations on the Smoothness Properties of

Real Functions Computed by Weighted Finite Automata. Fundamenta Informati-
cae 73(1,2), 99–106 (2006)

24. Culik II, K., Dube, S.: Implementing Daubechies Wavelet Transform with Weighted
Finite Automata. Acta Informatica 34(5), 347–366 (1997)

25. Culik II, K., Kari, J.J.: Inference Algorithms for WFA and Image Compression.
In: Fisher, Y. (ed.) Fractal Image Compression: Theory and Application, Springer,
Heidelberg (1995)

26. Derencourt, D., Karhumäki, J., Latteux, M., Terlutte, A.: On Computational
Power of Weighted Finite Automata. In: Havel, I.M., Koubek, V. (eds.) Math-
ematical Foundations of Computer Science 1992. LNCS, vol. 629, pp. 236–245.
Springer, Heidelberg (1992)

27. ITU-T: Recommendation T.82 - Coded representation of picture and audio infor-
mation - Progressive bi-level image compression (1993)

28. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer, Hei-
delberg (1988)

29. Halava, V., Harju, T.: Undecidability in Integer Weighted Finite Automata. Fun-
damenta Informaticae 38(1-2), 189–200 (1999)

30. Halava, V., Harju, T.: Languages Accepted by Integer Weighted Finite Automata.
In: Karhumäki, J., Maurer, H.A., Paun, G., Rozenberg, G. (eds.) Jewels are For-
ever, pp. 123–134. Springer, Heidelberg (1999)

31. Culik II, K., Dube, S.: Affine Automata: A Technique to Generate Complex Images.
In: Rovan, B. (ed.) Mathematical Foundations of Computer Science 1990. LNCS,
vol. 452, pp. 224–231. Springer, Heidelberg (1990)

32. Shallit, J., Stolfi, J.: Two methods for generating fractals. Computers and Graph-
ics 13(2), 185–191 (1989)

33. Culik II, K., Valenta, V., Kari, J.: Compression of Silhouette-like Images based on
WFA. Journal of Universal Computer Science 3(10), 1100–1113 (1997)

22 J. Albert and G. Tischler

34. Culik II, K., Kari, J.: Computational Fractal Geometry with WFA. Acta Informat-
ica 34(2), 151–166 (1997)

35. Wallace, G.K.: The JPEG still picture compression standard. Communications of
the ACM 34(4), 30–44 (1991)

36. International Organization for Standardization: ISO 15444: Information Technol-
ogy — JPEG 2000 Image Coding System (2002)

37. Hutchinson, J.E.: Fractals and self-similarity. Indiana University Mathematics
Journal 30(5), 713–747 (1981)

38. Watt, A.: Computer Graphics. Addison-Wesley, Reading (2000)
39. Barnsley, M.: Fractals everywhere, 2nd edn. Academic Press, London (1993)
40. Farin, G.: Curves and surfaces for computer aided geometric design, 2nd edn.

Academic Press, London (1990)

Sturmian and Episturmian Words

(A Survey of Some Recent Results)

Jean Berstel

Institut Gaspard Monge, Université Paris-Est, Marne-la-Vallée, France

Abstract. This survey paper contains a description of some recent re-
sults concerning Sturmian and episturmian words, with particular em-
phasis on central words. We list fourteen characterizations of central
words. We give the characterizations of Sturmian and episturmian words
by lexicographic ordering, we show how the Burrows-Wheeler transform
behaves on Sturmian words. We mention results on balanced episturmian
words. We give a description of the compact suffix automaton of central
Sturmian words.

1 Introduction

Sturmian words are combinatorial objects that are quite remarkable by the num-
ber of different characterizations they have, formulated in terms coming from
different mathematical frameworks.

Sturmian words have a geometric description as digitized straight lines. Com-
puter representation of lines has been an active subject of research, although
early theory of Sturmian words remained unnoticed in the patter recognition
community. The paper by [1] is a review of recognition of straight lines with
respect to interaction with other disciplines. The natural generalization would
be here to digitized planes, and as counter part to Sturmian bisequences.

Sturmian words have an arithmetic description, as rotations on the torus, a
combinatorial description, as aperiodic words that are balanced, a description
from the point of view of dynamical systems, as aperiodic words of minimal factor
(subword) complexity, and so on. Many of these descriptions are known since
the years 1940 and the fundamental paper [2], and a new widely disseminated
research on these words has been started about thirty years ago.

In all these cases, the description given is a characterization, that is the con-
dition stated fully describes the set of Sturmian words. Other, less known char-
acterizations of this kind have been given. For instance, Sturmian words are
characterized by the number of their return words, or by their palindromic com-
plexity, that is the number of palindromic factors they have.

Theoretical computer scientists have contributed the point of view of effective
computation. These have been studied and developed for the class of charac-
teristic Sturmian words, where amazing computational descriptions have been
provided. The special class of characteristic Sturmian words has itself some char-
acterizations of several kinds.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 23–47, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

24 J. Berstel

The richness of the theory of Sturmian words, as the meeting point of tools
from different mathematical descriptions, and as extremal point of various fam-
ilies of infinite words, has of course led to tentatives of generalizations to other
situations, especially with the objective to capture the essence of what makes
the Sturmian words so special.

One of the limitation of Sturmian words is that they are over a binary alpha-
bet. Among the extensions to larger alphabet, the so called episturmian words
have appeared to be best suited family by the number of properties of Sturmian
words they share.

Another extension is to two dimensions, that is to what are discretized or dig-
ital planes. This is quite interesting from the applications to pattern recognition,
and is an ongoing research topic.

Another generalization is to trees. This is just at its beginnings (see [3]).
Another extension is obtained when the reversal operator is replaced by an
arbitrary involutory automorphism of the free monoid, see [4].

2 Sturmian and Episturmian Words

Before starting, we give some notational conventions. Given a nonempty word
w, we denote by w− the word without its last letter. If w has at least two letters,
then we write w= instead of w−−. Thus, for instance abaab= = aba.

Given a finite or infinite word w, the set of letters that occur in w is denoted
by Alph(w). If w is infinite, Ult(w) denotes the set of letters that occur infinitely
many often in w.

Finally, we denote by w(k) the letter at position k (k ≥ 0) in the word w.

2.1 Complexity

Let w be an infinite word on some alphabet A. We denote by F (w) the set of
(finite) factors of w, and by Fn(w) = F (w) ∩ An the set of factors of length n of
w. The complexity function cw of w is defined by

cw(n) = Card(Fn(w))

This complexity is also called subword or factor or block complexity. The (right)
degree degw(x) of a finite word x in w is the number of letters a such that xa is
a factor of w:

degw(x) = Card{a ∈ A | xa ∈ F (w)}
Similarly, the left degree of w is the number of a ∈ A with ax ∈ F (w). Clearly,
degw(x) ≥ 1 for each factor x of w. Also, degw(xy) ≤ degw(y) for all x, y. Clearly

cw(n + 1) =
∑

x∈Fn(w)

deg(x) .

A factor x is right special (left special) if its degree (left degree) is strictly greater
than 1. Any suffix of a right special factor is again right special. Observe that

Sturmian and Episturmian Words 25

cw(n + 1) − cw(n) =
∑

x∈Sn(w)

deg(x) − 1 . (1)

where Sn(w) is the set of right special factors of length n. An infinite word w is
episturmian if the set F (w) is closed under reversal, and if, for every n ≥ 1 there
exists at most one right special factor of length n. It is aperiodic episturmian if it
is episturmian and aperiodic, that is not eventually periodic. This is equivalent
to require that there is exactly one right special factor of each length. The word
w is strict episturmian if w is aperiodic episturmian and if all its right special
factors have the same degree. If this degree is k, then it follows from (1) that for
n ≥ 1

cw(n) = kn + 1 .

Below, we will give a more detailed description the Tribonacci word which is a
strict episturmian word. The theory of episturmian words and morphisms has
been developed in three basic papers [5,6,7] by Justin and Pirillo, the first with
Droubay, see also [8].

Recall that an infinite word w is recurrent if each factor of w occurs infinitely
many often in w, and it is uniformly recurrent if each factor occurs infinitely
many often with bounded gaps between consecutive occurrences. In other terms,
w is uniformly recurrent if, for every n, there exists N such that each factor of
w of length N contains all factors of w of length n, in symbols Fn(w) = Fn(u)
for all u ∈ FN (w). Any episturmian word is uniformly recurrent.

Strict episturmian words are also called Arnoux-Rauzy words or AR-words.
They were introduced and studied in [9], mainly in the case of three letters.
Strict episturmian words over two letters are exactly the Sturmian words. These
are aperiodic words of minimal block complexity in view of the well-known.

Theorem 1. [2,10] An infinite word w is eventually periodic if and only if there
exists an integer n ≥ 1 such that cw(n) ≤ n.

2.2 Other Complexity Functions

Several other measures of complexity of infinite words have been defined and
compared to the block complexity.

The palindrome complexity function pw of an infinite word w associates to
each integer n ≥ 0 the number of distinct palindromes of length n in w.

A general exposition of palindrome complexity together with new results is
given in [11]. In particular, it is shown in this paper that if w is an aperiodic
infinite word, then

pw(n) <
16
n

cw

(
n +

⌊n

4

⌋)
.

Thus in particular if cw(n) = O(n) then w has bounded palindromic complex-
ity. This holds for Sturmian and episturmian words, for automatic words, and
for words that are fixed points of primitive morphisms. For uniformly recurrent

26 J. Berstel

words, there is a more precise formula given in [12]. They prove that, provided
the set of factors F (w) is closed under reversal,

pw(n) + pw(n + 1) ≤ 2 + cw(n + 1) − cw(n) .

This is sharp for Sturmian words: these are characterized by the fact that
pw(n) = 1 if n is even and pw(n) = 2 if n is odd [13], and also for AR-words over
r > 2 letters: these words have palindrome complexity pw(n) = 1 if n is even
and pw(n) = r if n is odd [14].

Another complexity function is arithmetical complexity introduced in [15].
Given an infinite word w = w(0)w(1) · · · , the arithmetical complexity function
aw associates to n ≥ 0 the number of distinct words of the

w(k)w(k + d)w(k + 2d) · · · w(k + (n − 1)d)

for k ≥ 0, d ≥ 1. The arithmetical complexity of a Sturmian word depends only
on its slope (see below), since two Sturmian words have the same set of factors
if and only if they have same slope. So, it is convenient to write aα instead of
aw for a Sturmian word of slope α.

Theorem 2. [16] For any Sturmian word of slope α, one has

aα(n) ≤ h(n)

where

h(n) = 2 +
(

n + 1
3

)
+ 2

n−1∑
i=1

(n − i)φ(i) .

Here φ is Euler’s totient function. In fact, the authors give the exact expression
for the arithmetical complexity of Sturmian words for 1/3 < α < 1/2 (note
that exchanging the two letters in a Sturmian words replaces the slope α by
1 − α without changing the complexity, so the result holds also for 1/2 < α <
2/3). Denote by (rk) the decreasing sequence of rational numbers given by rk =
k/(3k − 1), for k ≥ 2. Thus r2 = 2/3, r3 = 3/8.

Theorem 3. [16] For any irrational α with 1/3 < α < 1/2, one has

aα(n) =

{
h(n) − 8 if n is odd
h(n) − 9 otherwise

for n ≥ 3k, where k is such that rk−1 > α > rk.

For other results concerning arithmetical complexity, see [17].
A more general measure is the maximal pattern complexity. A window τ of

size k is a sequence 0 = τ0 < τ1 < · · · < τk−1 of integers. The τ -pattern at
position n in w is the word

w(n + τ0)w(n + τ1) · · · w(n + τk−1) .

Sturmian and Episturmian Words 27

Denote by Fτ (w) the set of τ -pattern occurring in w. The τ -complexity of w is
the number cw(τ) = CardFτ (w), and the maximal pattern complexity is

c∗w(k) = sup
|τ |=k

cw(τ) ,

where |τ | denotes the size of τ . There is an analogue of Theorem 1 for the
maximal pattern complexity:

Theorem 4. [18] An infinite word w is eventually periodic if and only if c∗w(k) <
2k for some k ≥ 1.

Words with maximal pattern complexity 2k have been called pattern Sturmian
words and are studied in [18]. Sturmian words are special cases of pattern Stur-
mian words. Generalizations are given in [19,20].

There is a variation of block complexity considered by [21,22]. Instead of
counting the number of factors of given length in an infinite word, they count
the number of factors of this length that occur infinitely many often in the word.
If the word is uniformly recurrent, the complexities are the same. For skew words,
as defined later, they are different.

2.3 Palindromic Closure

The right palindromic closure of a word w is the shortest palindrome which has
w as a prefix. It is denoted by w(+). For instance, the right palindromic closure
of 01011 is 0010110100. It is easy to prove that

w(+) = uvũ ,

where v is the longest palindrome suffix of w. In the example, the longest palin-
drome suffix of w = 001011 is 11, and therefore w(+) = 0010 11 0100. The notion
was introduced and used by de Luca [23,24] for the analysis of finite Sturmian
words.

Given a finite word d, the right iterated palindrome produced by d is the word
P (d) defined as follows. P (ε) = ε and for a word d and a letter a,

P (da) = (P (d)a)(+) . (2)

For example, for the word abbaab one gets successively

d P (d)
a a
ab aba
abb ababa
abba ababaababa
abbaa ababaababaababa
abbaab ababaababaabababaababaababa

28 J. Berstel

The word d is the directive word of P (d). A right iterated palindrome is a right
iterated palindrome w produced by some word d. If d is over at most two letters,
then the word w is binary.

If d is an infinite word, the right iterated palindrome produced by d is the
infinite word which has as prefixes all right iterated palindromes produced by
the finite prefixes of d. This makes sense because P (x) is a prefix of P (xy) for
all words x, y.

If a does not occur in d, then (2) gives simply P (da) = P (d)aP (d)̃. There is
another way to compute (2) when the letter a occurs in d. Let pa be the longest
prefix of d ending with the letter a, and define the word s by P (pa) = P (p)s.
Then P (da) = P (d)s. In our example, for db = abbaab, one has p = ab and
s = baababaababa. This computation rule is given in [25].

2.4 Justin’s Formula

Justin’s formula gives a useful relation between standard words and central words
generated by iterated right palindromic closure. Let A be an alphabet and let
ψ : A∗ → End(A∗) be the morphism that maps a letter a to the morphism ψa

defined, for b ∈ A, by

ψa(b) =

{
ab if b �= a ,
a otherwise.

For instance, if a, b, c are letters, then

ψa(bac) = abaac .

Composition is defined for words u, v by

ψuv = ψu ◦ ψv ,

that is
ψuv(w) = ψu(ψv(w)) .

For instance,
ψabc(a) = ψab(ca) = ψa(bcba) = abacaba .

A word of the form ψu(a) for some word u and some letter a is an epistan-
dard word. The morphisms ψu are pure epistandard morphisms. In the binary
case, these morphisms are called pure Sturmian morphisms, and the words they
produce are indeed the standard words. Justin’s formula establishes a relation
between the morphism ψ and right palindromic closure P .

Proposition 5. (Justin’s Formula) The following holds for any words u, v:

P (uv) = ψu(P (v))P (u) . (3)

As an example, let u = ab, v = ac. Then P (u) = aba, P (v) = aca, ψu(P (v)) =
ψa(ψb(aca)) = ψa(babcba) = abaabacaba, whereas P (abac) = ((abaa)(+)c)(+) =
abaabac(+) = abaabacabaaba, so indeed P (abac) = ψab(aca)aba.

Sturmian and Episturmian Words 29

The formula admits several interesting special cases. First, when u is a letter,
then (3) becomes

P (av) = ψa(P (v))a .

This shows that P (av) is obtained from P (v) by simply inserting the letter a
before each letter of P (v) which is not an a, and then adding a final a. For
instance, since P (ba) = bab, one gets P (aba) = abaaba. Observe that P (av) is
also obtained from P (v) by inserting the letter a after each non-a letter.

Another special case arises when v is just a letter. Then (3) becomes

P (ua) = ψu(a)P (u) . (4)

This shows a way to compute the right palindrome closure P (ua) by prefixing
P (u) the standard word ψu(a). Recall that by definition P (ua) = P (u)aỹ, where
P (u)a = yz with z a maximal suffix of P (u)a which is a palindrome. Since P (u)
and P (ua) both are palindromes, one has P (ua) = yaP (u) and so ψu(a) = ya.

As an example, consider the computation of P (acbc). By (4), it suffices to
compute ψacb(c) = acabac and P (acb) = acabaca to get the word

P (acbc) = acabacacabaca .

Finally, iteration of (4) gives, for a word u = a1a2 · · ·an the formula

P (a1a2 · · · an) = ψa1a2···an−1(an)ψa1a2···an−2(an−1) · · · ψa1a2(a3)ψa1(a2)a1 .

For instance

P (acbc) = ψacb(c)ψac(b)ψa(c)a = acabac · acab · ac · a .

As an illustration of the uses of the formula, we prove the following observation.

Remark 6. A standard episturmian word w has the form ψu(v), where u is a
finite word and v is a strict standard episturmian word.

Proof. Let d be the infinite word such that w = P (d). Let d′ be a suffix of d such
that Ult(d′) = Alph(d′), and let d = ud′. By Justin’s formula, w = ψu(P (d′)),
and by construction P (d′) is strict.

Another remark concerns eventually periodic standard episturmian words. If w
is such a word, then it is purely periodic. Indeed, by Theorem 3 in [5], one
has w = P (vaω) for some word v and some letter a, and consequently w =
ψv(P (aω)) = ψv(aω) = (ψv(a))ω.

Example 7. The Tribonacci word is a generalization of the Fibonacci word. Fi-
nite Tribonacci words are the words tn defined over three letters a, b, c by

t−1 = c, t0 = a, t1 = ab, tn = tn−1tn−2tn−3 (n ≥ 2) .

30 J. Berstel

Thus
t2 = abac
t3 = abacaba
t4 = abacabaabacab
t5 = abacabaabacababacabaabac

The infinite Tribonacci word t is the limit of the words tn. An equivalent defini-
tion of the tn is through the morphism

ψ : a 	→ ab, b 	→ ac, c 	→ a .

Indeed, it is easy to check that tn = ψn(a) for n ≥ 0. Finally, one has also

t = P ((abc)ω)

showing that t is a strict standard episturmian word. Indeed, denote by δn the
prefix of length n of (abc)ω and set un = P (δn). Then it can be shown that
un = tn−1un−1 for n ≥ 1. Thus t = limun. Also

un = tn−1tn−2 · · · t0 .

This formula has been extended to more general words in [26]. For other proper-
ties of the Tribonacci word, see [27,28] and the chapter by Allouche and Berthé
in [29].

3 Sturmian Words

Sturmian words have particular properties related to their geometric interpreta-
tion. This holds especially for finite Sturmian words.

3.1 Mechanical Words

Sturmian words have a geometric interpretation as cutting sequences of straight
lines (this word comes from [30]) and therefore are closely related to digitization
and pattern recognition. An equivalent formulation is through mechanical words
(as they are called in [2]) or as rotation words (this is the name given for instance
in [31]).

Consider a straight line in the plane. At each intersection point with the
integer grid, write the letter a if the line intersects grid vertically, and write
the letter b otherwise, see Figure 1. This is the definition of Sturmian words as
cutting sequences. By a “shear”, that is the mapping (x, y) 	→ (x + y, y), one
gets the definition as “mechanical words”. These are infinite words defined, for
reals 0 < α < 1 and 0 ≤ ρ ≤ 1, by

sα,ρ(n) =

{
a if
(n + 1)α + ρ� =
nα + ρ�,
b otherwise.

s′α,ρ(n) =

{
a if �(n + 1)α + ρ
 = �nα + ρ
,
b otherwise.

Sturmian and Episturmian Words 31

ba ab a ba a b a ab ba

Fig. 1. A Sturmian word defined as a cutting sequence by intersection or by adjacent
squares, and the upper and the lower mechanical word

for n ≥ 0. The word sα,ρ (s′α,ρ) is called the lower (upper) mechanical word with
slope α and intercept ρ.

b a a b a b a a b a a b a

Fig. 2. “Shear” of the cutting sequence

There is an equivalent definition by rotation. Consider indeed the torus T =
R/Z of reals modulo 1, and partition T

Ia = [0, 1 − α), Ib = [1 − α, 1), I ′a = (0, 1 − α], I ′b = (1 − α, 1] ,

and let Rα : T → T be the rotation of angle α. Then

sα,ρ(n) =

{
a if Rn

α(ρ) ∈ Ia,
b otherwise.

, s′α,ρ(n) =

{
a if Rn

α(ρ) ∈ I ′a,
b otherwise.

This is why mechanical words are also called rotation words. They are rational
words when α is rational, and irrational words when α is irrational. It is known
[2] that irrational mechanical words are exactly Sturmian words. It is also known
that two Sturmian words with the same slope have the same set of factors. When
ρ = α, one has sα,ρ = s′α,ρ. This word is called the characteristic word of slope
α, and is denoted by cα. For a systematic exposition, see [32] and [33].

4 Finite Sturmian Words

In this section, all words are binary over the alphabet A = {a, b}.
A finite word is Sturmian if it is a factor of some infinite Sturmian word.

Among finite Sturmian words, particular classes are the standard words, the
central words, and the Christoffel words.

32 J. Berstel

� �

� � �

� �

� � �

� �

Fig. 3. The central word corresponding to the point (8, 5) is x = abaababaaba. The
upper and lower Christoffel words are bxa = babaababaabaa and axb = aabaababaabab.
Two standard words are associated with them, namely xab = abaababaabaab and
xba = abaababaababa.

The mechanical words sα,ρ and s′α,ρ are purely periodic when α is rational.
Moreover, if α = p/(p + q) for p⊥q, then sα,0 = wω and s′α,0 = w′ω where w and
w′ are precisely the lower and upper Christoffel words defined by p and q. It is
easily checked that for 0 ≤ n < p + q,

⌊
(n + 1)

p

q

⌋
=

⌊
n

p

q

⌋
⇐⇒ np mod p + q < (n + 1)p mod p + q .

So the lower Christoffel word is obtained simply by considering consecutive values
in the sequence np mod p + q. For p = 5 and q = 8, one gets the sequence

0 a→ 5 a→ 10 b→ 2 a→ 7 a→ 12 b→ 4 a→ 9 b→ 1 a→ 6 a→ 11 b→ 3 a→ 8 b→ 0

This is the construction as given by Christoffel in [34]. Another equivalent defi-
nition is by directive sequences and will be given below.

A finite word w is balanced if, for each pair of factors x, y of w of equal length,∣∣∣|x|a − |y|a
∣∣∣ ≤ 1 for the letter a. Here |x|a denotes the number of occurrences of

a in x.

4.1 Standard and Central Words

A directive sequence d = (d0, d1, . . . , dk) is a sequence of integers with d0 ≥ 0
and di > 0 for i ≥ 1. The standard word produced by d is the word S(d) = sk+1,
where

s−1 = b , s0 = a , sn+1 = sdn
n sn−1 , n ≥ 0 .

Example 8. For d = (3, 1, 2, 1), one gets s1 = a3b, s2 = a3ba, s3 = a3ba4ba4b,
S(d) = s4 = a3ba4ba4ba3ba.

The standard word produced by the empty sequence is a, the standard word
produced by (0) is b.

If k ≥ 0, the sequences d = (d0, d1, . . . , dk, 1) and d′ = (d0, d1, . . . , dk+1) produce
the same word up to the last two letters which are interchanged, because

S(d) = sdk

k sk−1sk , S(d′) = sdk

k sksk−1 ,

Sturmian and Episturmian Words 33

and sk−1sk and sksk−1 are easily seen to be the same up to the last two letters,
by induction.

A central word is a standard word without its two last letters: a word x is
central if and only if x = s= for some standard word s.

A upper (lower) Christoffel word is a word of the form bxa (axb) for some
central word x.

The relation between the mechanical definition and the description by the
directive sequence is through the continued fraction expansion of the slope. Let
again p and q be positive integers with p⊥q. The rational number q/p has two
expansions into continued fractions, say

[d0, d1, . . . , dk, 1] = [d0, d1, . . . , dk + 1] .

These are the directive sequences for the two standard words with q letters a
and p letters b. For example, if q = 5 and p = 8, then q/p = [1, 1, 1, 1, 1] =
[1, 1, 1, 2]. Also, for the word s4 = a3ba4ba4ba3ba produced by the directive
sequence d = (3, 1, 2, 1) given above, one has q/p = [3, 1, 2, 1] with p = |s4|a = 4
and q = |s4|b = 15.

Proposition 9. Let x be a word. Then the following are equivalent

1. x is a central word;
2. xab is a standard word;
3. xba is a standard word;
4. bxa is an upper Christoffel word;
5. axb is a lower Christoffel word.

As a consequence, every characterization of central words translates automat-
ically into a characterization of standard words and of Christoffel words. In
particular, we may speak about the central word produced by a directive se-
quence, and as mentioned above, the sequences d = (d0, d1, . . . , dk, 1) and d′ =
(d0, d1, . . . , dk + 1) produce the same central word.

4.2 Characterizations of Central Words

Proposition 10. [35] A word x is central if and only if the words axb and bxa
are conjugate.

Proposition 11. [36] A word is central if and only if it is a palindrome prefix
of a characteristic Sturmian word.

Proposition 12. [23] A word is central if and only if it is a binary right iterated
palindrome.

Proposition 13. [36] A word w is central if and only if wab or wba is a standard
Sturmian word.

Proposition 14. [36] A word w is central if and only if it is a palindrome and
wab (or wba) is a product of two palindromes.

34 J. Berstel

Proposition 15. [37] A word w is a conjugate of a standard Sturmian word if
and only if it is primitive and all its conjugates are balanced.

Proposition 16. [37] A word w is a conjugate of a standard Sturmian word if
and only if the circular word w has k+1 factors of length k for 0 ≤ k < |w|, and
this holds if and only if w is primitive and has |w| − 1 factors of length |w| − 2.

Proposition 17. [36] A word w is central if and only if the words awa, awb,
bwa, bwb are balanced.

In fact, a weaker condition is sufficient.

Proposition 18. [36] A word w is central if and only if the words awb and bwa
are balanced.

Proposition 19. [23,38] A word w is central if and only if it is a palindrome
and the words wa and wb are balanced.

Denote by πw the minimal period of w. Then one has

Proposition 20. [38] A word w is central if and only if it is a power of a letter
or it is a palindrome and its prefix of length πw −2 is a right special factor of w.

Example 21. Consider the word w = baaabaaab has minimal period 4. Its prefix
of length 2 is ba which is not a right special factor of w. So, according to Proposi-
tion 20, this word is not central. The conclusion follows also from Proposition 19,
since wb = baaabaaabb is not balanced.

The next proposition is actually a consequence of a result of [23].

Proposition 22. [39] A word w is central if it is a power of a single letter or it
satisfies the equation w = w1abw2 = w2baw1 with w1, w2 ∈ a, b∗. Moreover, in
this latter case w1 and w2 are central words, p = |w1| + 2 and q = |w2| + 2 are
co-prime periods of w and min p, q is the minimal period of w.

Proposition 23. [36] A word w is central if and only if there exist integers p⊥q
with |w| = p + q − 2 such that w has periods p, q.

There is a duality between periods and number of letters in central words as
already described in [23] and in [40]. Further results are in [24]. This duality has
been developed recently in [41].

Proposition 24. [40] A word w is central if and only if the word awb is a
balanced Lyndon word.

A Sturmian palindrome is a finite Sturmian word which is a palindrome. Every
central word is a Sturmian palindrome but the converse is false. For instance,
baab is a Sturmian palindrome (it is a factor of the infinite Fibonacci word
f = abaab · · ·) but is it not central in view of Proposition 18 since bbaaba is not
balanced. The following characterization holds.

Sturmian and Episturmian Words 35

Theorem 25. [37,23,5,38] A word is a Sturmian palindrome if and only if it is
a median factor of a central word.

There are much more Sturmian palindromes than central words. The number of
central words of length n is φ(n+2) since a central word of length n is described
by two positive integers p⊥q with p + q = n + 2. On the contrary, one has

Theorem 26. [38] Denote by h(n) the number of Sturmian palindromes of
length n. Then

h(2n) = 1 +
n∑

i=1

φ(2i) , h(2n + 1) = 1 +
n∑

i=1

φ(2i + 1) .

4.3 Directive Word and Directive Sequence

Given a directive sequence d = (d0, d1, . . .), the word S(d) produced by d is a
standard word if d is finite, a characteristic word if d is infinite. Define a directive
word δ by δ = ad0bd1ad2 · · · cdn , where c = a if n is even, and c = b otherwise.
The relation between directive words and directive sequences in the binary case
is the following.

Proposition 27. Let d and δ be as above. Then S(d) = ψδ(c̄) where c̄ is the
opposite letter of c and moreover S(d)= = P (δ).

5 Balance

Let
 ≥ 1 be an integer. A set X of words over an alphabet A is
-balanced if, for
each x, y in X of equal length,

∣∣∣|x|a −|y|a
∣∣∣ ≤
 for all letters a. Here |x|a denotes

the number of occurrences of a in x. A word is
-balanced if the set of its factors
is balanced. Binary balanced words are precisely 1-balanced words. A word w is
strongly balanced if w is primitive and w2 is balanced. A word w such that w2

is balanced, without being necessarily primitive is called cyclically balanced in
[42]. Thus a word is cyclically balanced if it is a power of some strongly balanced
word. For instance, abba is balanced but is not strongly balanced because the
square abbaabba contains both factors aa and bb. The word ababab is cyclically
balanced. A finite Sturmian word is a word which is a factor of some (infinite)
Sturmian word.

Proposition 28. A finite binary word is balanced if and only if it is a finite
Sturmian word.

Proposition 29. [43,42,44] A finite binary word is strongly balanced if and only
if it is a conjugate of some standard Sturmian word.

For infinite words, we recall the following characterization of Sturmian words.

Proposition 30. A binary infinite word is Sturmian if and only if it is balanced
and aperiodic.

36 J. Berstel

It is easy to find balanced eventually periodic words, such as abω. These are not
Sturmian. We discuss this in the next section.

In fact, Sturmian words share a stronger balance property. Denote by |x|u the
number of distinct occurrences of the word u as a factor in the word x, counting
also overlaps. For instance, |abbabaab|ba = 2 and |abaababa|aba = 3. Then, one
has

Theorem 31. [45] A binary infinite word w is Sturmian if and only if for each
word u, ∣∣∣|x|u − |y|u

∣∣∣ ≤ |u|

for each pair of factors x, y of the same length of w,

A characterization of episturmian words by a balance property like Proposi-
tion 30 does not exist. It is known that the Tribonacci word t is 2-balanced.
However, when applying a well chosen pure epistandard morphism, it does not
remain 2-balanced. For instance, the word μ(t) with μ = ψaabbac, contains the
factors baabaaabaabaabaaabaab and aacaabaabaaabaabaacaa of length 21. In-
deed, the first is a factor of μ(bab) and the second is a factor of μ(aca). The
number of b in these factors are 7 and 4, so their balance is 3. It has been proved
by [46] that there exist AR-sequences which not
-balanced for any
.

There is a closed formula for the number of finite balanced words, that is of
factors of Sturmian words.

Proposition 32. The number of balanced binary words of length n is

1 +
n∑

i=1

(n + 1 − i)φ(i)

where φ is the Euler’s totient function.

The first proof of this formula is perhaps [47]. Other proofs are in [48,36,23,49,50].
Related results also appear in [51,52]. An exact formula for the number g�(n)
of
-balance words of length n seems not to be known. It was shown already in
[47] that it is exponential for
 ≥ 2 (whereas usual number theory shows that
g1(n) = N3/π2 + O(n2)) and more exactly that

g�(n) = Θ

(

 + 1

/2�

)n/(�+1)

which gives g2(n) = Θ(3n/3). Heinis provided independently in [53] a lower
bound, and Tarannikov [54] shows that

g�(n) = Θ(n2(2 cos
π

 + 2
)n)

which is better for
 ≥ 3.
On the other hand, the number of factors of length n of strict episturmian

words (or equivalently of Arnoux-Rauzy words) has been considered. A bispecial
factor is a word that is both a left and a right special factor of the same Arnoux-
Rauzy word.

Sturmian and Episturmian Words 37

Proposition 33. [55] The number of factors of length n of strict episturmian
words over a k-letter alphabet is

k + (n − 1)k(k − 1) + (k − 1)2
n−2∑
i=1

(n − i − 1)b(i)

where b(m) is the number of bispecial factors of length m of Arnoux-Rauzy words.

The number of bispecial factors is evaluated, in [55], in terms of a generalized
Euclidean algorithm.

We already mentioned that episturmian words are not balanced in general. In
fact, almost the opposite is true: episturmian words are never balanced, except
in simple cases. More precisely, the following holds.

Theorem 34. [56] Let x be a standard episturmian word over the alphabet A =
{1, 2, . . . , k} with k ≥ 3. Then x is balanced if and only if its directive word δ can
be written in one of the following forms, up to a permutation of the alphabet.

1. 123 · · ·k1ω

2. 1n23 · · · (k − 1)kω for some n ≥ 1
3. 12 · · ·
1(
 + 1) · · · (k − 1)kω for some 1 ≤
 < k.

For k = 5, an example of the last case is 121345ω with
 = 2. All episturmian
words of the theorem are eventually periodic.

6 Lexicographic Ordering

Every (total) order on an alphabet A defines a lexicographic order on (right)
infinite words. Given an infinite word x, we denote by min(x) and by max(x) the
minimal and the maximal word, for the lexicographic order, of the orbit of x. This
is simply defined by the condition that, for each integer n, the prefix of length
n of min(x) (of max(x)) is the smallest (largest) word in Fn(x). For Sturmian
words, it is easily seen that sα,ρ < sα,ρ′ if and only if ρ < ρ′ (recall that α is
irrational). Thus for the ordering a < b, one gets that min(sα,ρ) = sα,0 = acα and
max(sα,ρ) = bcα, where cα denotes the characteristic word with slope α. As an
example, consider the Fibonacci word f = abaababaabaab · · · . Then min(f) = af
and max(f) = bf .

The comparison of words for the lexicographic order is well suited for the
study of balanced infinite words, and can be extended to the case of more than
two letters. It will be convenient to use the following old terminology from [2].
A Sturmian trajectory is an infinite binary word whose (finite) factors are fi-
nite Sturmian words. Thus, Sturmian trajectories are precisely balanced binary
words.

Similarly, we call episturmian trajectory an infinite word whose finite factors
are finite episturmian words. Episturmian trajectories are called episturmian
words in the wide sense in [57].

It is known since [2] that Sturmian trajectories can be partitioned into three
classes:

38 J. Berstel

1. aperiodic words: these are exactly all Sturmian words or equivalently all
irrational mechanical words;

2. (purely) periodic words : these are the rational mechanical words; they are
of the form wω , where w is a conjugate of some standard word;

3. eventually periodic but not purely periodic words. These are called skew
words. They are not mechanical words. It has been shown that they are
those suffixes of the words of the form μ(anbaω), for some pure standard
Sturmian morphism μ and some integer n ≥ 0 which are not suffixes of
μ(aω).

The three classes of Sturmian trajectories can be grouped together in three
manners. First, group (1) is compose of aperiodic words whereas groups (2)+(3)
are eventually periodic words. Next, words in (1) + (2) are uniformly recurrent,
whereas words of type (3) are not recurrent. Finally, words of type (1) + (3) are
precisely the words called fine by Pirillo in [58] and that we will describe in a
moment. First we give the following characterization.

Theorem 35. A binary infinite word x over {a, b} with a < b is a Sturmian
trajectory if and only if there is an infinite y such that ay ≤ min(x) and
max(x) ≤ by.

This is a corollary of the next theorem, and appears also, under a different guise,
in [59]. We denote by min(A) the smallest letter in the alphabet A for the given
order.

Theorem 36. [57] An infinite word x over A is an episturmian trajectory if
and only if there exists an infinite word y such that min(A)y ≤ min(x) for every
order over A.

Episturmian trajectories are either episturmian words or belong to the family
of so-called episkew words. These are exactly the episturmian trajectories which
are not recurrent. It is quite interesting to note that the characterization of skew
Sturmian trajectories carries over, with some complications, to episkew words.
This is done in [60], see also [57].

Proposition 37. An infinite word x with A = Alph(x) is episkew if and only
if there is a letter a, a standard episturmian word y on B = A \ {a}, a finite
prefix p of y and a pure epistandard morphism μ such that zx = μ(p̃ay) for some
proper prefix z of μ(p̃a).

If, in the proposition, the word y is strict, then the word x itself is called strict
episkew. Observe also that in the Sturmian case the word p̃ay indeed reduces to
a word of the form apbaω.

In the case of characteristic words or of epistandard words, one has stronger
conditions.

Theorem 38. [61] A binary word x over A = {a, b} with a < b is a character-
istic Sturmian word if and only if ax = min(x) and max(x) = bx.

Sturmian and Episturmian Words 39

A result similar to Theorem 38 holds for strict episturmian (or Arnoux-Rauzy)
words.

Proposition 39. [6] An infinite word x over some alphabet A is a strict epis-
tandard word if and only if min(A)x = min(x) for any order on A.

This is related to the following.

Proposition 40. [61] An infinite word x over some alphabet A is an epistandard
word if and only if min(A)x ≤ min(x) for any order on A.

Let x be an infinite word and let A = Alph(x). The word x is fine if there exists
an infinite word y such that min(x) = min(A)y holds for any lexicographic order.
As announced, we have the following.

Proposition 41. [58] A binary word is fine if and only if it is a Sturmian word
or a skew Sturmian word.

Thus, the Sturmian trajectories which are not fine are precisely the rational
mechanical words. This has been extended to episturmian trajectories.

Proposition 42. [60] A word x is fine if and only if it is a strict epistandard
word or a strict skew episturmian word.

7 Burrows-Wheeler Transformation

The Burrows-Wheeler transformation, introduced in [62], is a reversible trans-
formation that produces a permutation BWT(w) of an input sequence w. It
appears that the transform is easier to compress than the original sequence be-
cause there is some clustering effect in the transformed word. BWT is used in the
BZIP2 data compression algorithm. The Burrows-Wheeler transformation has a
strong relation to a transformation called the Gessel-Reutenauer transform, in-
troduced in [63]. This connection has been described in [64]. As has been shown
in [65] the Burrows-Wheeler transformation takes a very particular form when
applied to standard Sturmian words. Recent results are given in the forthcoming
paper [66].

The Burrows-Wheeler transformation takes as input a word w, and produces
as output a permutation BWT(w), obtained as follows. Let M(w) be the matrix
composed of all conjugates of w, ordered lexicographically. Then BWT(w) is the
last column of M(w).

Example 43. For the input word w = abraca, the matrix is

M(w) =

⎡
⎢⎢⎢⎢⎢⎢⎣

a a b r a c
a b r a c a
a c a a b r
b r a c a a
c a a b r a
r a c a a b

⎤
⎥⎥⎥⎥⎥⎥⎦

and the output is the last column, that is BWT(w) = caraab.

40 J. Berstel

Clearly, two words u and v are conjugate if and only if M(u) = M(v). In par-
ticular, BWT(u) = BWT(v). In order to make the transformation injective, the
position of the input word in the matrix is added to the transform. If u = vm

for some integer m and BWT(v) = a0a1 · · ·an−1, the BWT(u) = am
0 am

1 · · · am
n−1.

In fact, the matrix M(u) has every row repeated m times and every column
duplicated m times.

The Burrows-Wheeler Transform is reversible: given x = BWT(w) and an
index i, it is possible to recover w. To do this, one first recovers the first column
of M(w) by ordering lexicographically the letters of the word BWT(w). Next,
one defines a permutation τ on the set {0, . . . , n − 1} that maps a position in
the first column of M(w) to the corresponding position in x. This permutation
gives the word w, when started in the position i.

Example 44. Consider x = caraab, and let us compute w such that BWT(w) =
x. The matrix M(w) has the form

M(w) =

⎡
⎢⎢⎢⎢⎢⎢⎣

a · · · · c
a · · · · a
a · · · · r
b · · · · a
c · · · · a
r · · · · b

⎤
⎥⎥⎥⎥⎥⎥⎦

The correspondence τ is

τ =
(

0 1 2 3 4 5
1 3 4 5 0 2

)
=

(
1 3 5 4 0

)

Thus
1 3 5 2 4 0

w = a b r a c a

The main observation concerning the relation with Sturmian words is the fol-
lowing remarkable theorem. Recall that a binary word is strongly balanced if
and only if it is a conjugate of a standard Sturmian word.

Theorem 45. [66] A word w over {a, b}, with a < b is the power of a strongly
balanced word if and only if its Burrows-Wheeler Transform is of the form bqap.
Moreover, in the matrix M(w), each row is obtained from the preceding by re-
placing a factor ab by a factor ba, and all columns also are conjugates.

Example 46. Consider the strongly balanced word abaabab. The matrix is

M(abaabab) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a a b a b a b
a b a a b a b
a b a b a a b
a b a b a b a
b a a b a b a
b a b a a b a
b a b a b a a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Sturmian and Episturmian Words 41

Observe that the first (last) row is the lower (upper) Christoffel word, and these
rows are composed of the central word bordered by a, b and b, a respectively.

The matrix M(w) defined for the Burrows-Wheeler transform has also been
considered in [43] in the process of giving characterizations of strongly balanced
binary words. Denote by P (w) the matrix of partial sums of M(w) where P (w)i,j

is defined to be the number of b in the prefix of length j of the ith row in M(w).
For instance, the matrix in (5) has the matrix of partial sums.

P (abaabab) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 2 2 3
0 1 1 1 2 2 3
0 1 1 2 2 2 3
0 1 1 2 2 3 3
1 1 1 2 2 3 3
1 1 2 2 2 3 3
1 1 2 2 3 3 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

They prove the following

Theorem 47. [43] A word w over {a, b}, with a < b is the power of a strongly
balanced word if and only if every column in the matrix of partial sum is increas-
ing when read from top to bottom.

Let us mention briefly the connection of the Burrows-Wheeler and the Gessel-
Reutenauer transformation [63]. The Burrows-Wheeler transformation is the in-
verse of the Gessel-Reutenauer transformation. Define the standardization asso-
ciated to a word w = a1 · · · an over an ordered alphabet A as the permutation
σ given by

σ(i) < σ(j) iff ai < aj or (ai = aj and i < j)

Example 48. Consider the word ccbbbcacaaabba. After a lexicographic sort, the
symbols a are at positions 1–5, symbols b at positions 6–10. The symbols c
appear in position 11 to 14. This gives the permutation.

⎛
⎝

1 2 3 4 5 6 7 8 9 10 11 12 13 14
c c b b b c a c a a a b b a
11 12 6 7 8 13 1 14 2 3 4 9 10 5

⎞
⎠

After cycle decomposition, one gets

(1 11 4 7)
c a b a

(2 12 9)
c b a

(3 6 13 10)
b c b a

(5 8 14)
b c a

The result is (caba)(cba)(bcba)(bca)

Theorem 49. [63] The standardization σ induces a bijection between all words
over A and the family of multisets of conjugacy classes of primitive words
over A.

42 J. Berstel

Define a new order on finite order on words by

u � v if and only if uω < vω or (uω = vω and |u| ≤ |v|)

For example, aba ≺ ab because abaaba · · · < ababab · · · . Recovering the word w
from its decomposition S into conjugacy classes is done as follows: One sorts the
conjugates of words in S by ≺. Then the word w is the sequence of last letters
in this table.

Example 50. Consider the set S = {caba, bcba, bca, cba}. The conjugates of all
words in S are ordered with respect to the new order ≺. This gives the sequence
(abac, abc, abcb, acab, acb, babc, baca, bac, bca, bcba, caba, cab, cbab, cba). The word
composed of the last letters of the words in this sequence is ccbbbcacaaabba.

Conversely, to get the decomposition S from w, one sorts the word w alphabet-
ically, then computes the letter-correspondence permutation and then outputs
the permutation in cycle form, and computes the multiset.

Example 51. Starting with ccbbbcacaaabba, one gets the table
⎛
⎜⎜⎝

a a a a a b b b b b c c c c
1 2 3 4 5 6 7 8 9 10 11 12 13 14
7 9 10 11 14 3 4 5 12 13 1 2 6 8
c c b b b c a c a a a b b a

⎞
⎟⎟⎠

In cycle form, one gets

(1 7 4 11)
a b a c

(2 9 12)
a b c

(3 10 13 6)
a b c b

(5 14 8)
a c b

The output is the set S = {caba, bca, bcba, cba}.

8 Sturmian Graphs

Given a standard or a central Sturmian word it appears interesting to consider,
in this special case, some well known constructs, such as the (compacted) suffix
tree or the suffix automaton (also called DAWG for directed acyclic word graph).
A compacted version of the minimal suffix automaton has been considered by
[67] for the Fibonacci word and by [68] for arbitrary central words.

The CDWAG (compact directed acyclic word graph) G(w) of a word w is the
minimal automaton recognizing the set of suffixes of w, after removing non-final
states with out-degree 1.

The terminology DWAG stems from [69]. See also [70].

Example 52. For w = abaababaaba, the automaton G(w) (all states are final) is
given in Figure 4.

Any CDAWG is homogeneous, that is all edges leading to a state have the
same label. For the description of the method of construction, we use u[d] to

Sturmian and Episturmian Words 43

a ba aba baaba

ba

aba

baaba

Fig. 4. The automaton G(abaababaaba)

denote the reversal of the standard word with directive sequence d. Thus u[21] =
abaa because the standard word produced by (2, 1) is aaba. We write c[d] for the
central word produced by the directive sequence d. We use the identity

c[d0d1 · · ·dn1] = u[ε]d0u[d0]d1u[d0d1]d2 · · · u[d0d1 · · · dn−1]dn .

The CDAWG of a central word c with directive sequence d is constructed by
induction. The method goes as follows. Set d = d′δ1.

1. if δ �= 1, repeat the last edge of the graph of d′(δ − 1)1.
2. otherwise (that is d ends with 11), set d = d′′δ′11, take the graph of d′1, add

a new state and 1 + δ′ edges to this state. The common label of these fresh
edges is u[d′′].

Example 53. In order to compute the graph of 12311, we start with d = 11,
c[11] = a, and the graph

a

Then, using the second rule with d = 111, c[111] = a|ba, we get
a ba

Now the first rule is applied for d = 121, c[121] = a|ba|ba. This gives
a ba ba

For d = 1211 and c[1211] = a|ba|ba|ababa, the second rule gives
a ba ba ababa

For d = 1221, and setting z = ababa, one gets c[1221] = a|ba|ba|z|z and the
graph is

a ba ba z z

For d = 1231, one has c[1231] = a|ba|ba|z|z|z and

a ba ba z z z

44 J. Berstel

Finally, for d = 12311, one gets c[12311] = a|ba|ba|z|z|z|t with t = bazzz and
the graph

a ba ba z z z
t

The length of the central word c defined by d = (d0, d1, . . . , dk) is |
k| − 2,
where
n = |sn| − 2 and
−1 =
0 = 1,
n+1 = dn
n +
n−1. Let H(c) be the
graph obtained from the G(c) by replacing each label by its length. Then H(c)
counts from 0 to |c| in the following sense: each integer h with 0 ≤ h ≤ |c| is the
sum of the weights of exactly one path in H(c) starting at the initial state. In

a ba ba ababa 1 2 2 5

Fig. 5. The CDAWG for 1211 and the corresponding counting graph

other words, the set of weights in H(c) is complete and unambiguous base for
representing integer up to |c|, provided the representation is a path in the graph.
For example, the graph on the right of Figure 5 counts up to 10.

Problem 54. What is the minimal size of a graph with out-degree at most 2
counting from 0 to n?

If the size of the labels increase exponentially, like for the Fibonacci word, then
the size is O(log n). It is conjectured that the bound O(log n) always holds. This
is related to the following number-theoretic conjecture (see [68] for details).

Conjecture 55 (Zaremba). There exists an integer K such that for all positive
m, there exists some i⊥m, i < m such that all partial quotients in the continued
fraction expansions of i/m are bounded by K.

Acknowledgments

I thank Amy Glen, Aldo de Luca for their helpful comments, and Alessandro De
Luca for sending me several preprints.

References

1. Klette, R., Rosenfeld, A.: Digital straightness—a review. Discrete Appl. Math. 139,
197–230 (2004)

2. Morse, M., Hedlund, G.A.: Symbolic dynamics II. Sturmian trajectories. Amer. J.
Math. 62, 1–42 (1940)

Sturmian and Episturmian Words 45

3. Berstel, J., Boasson, L., Carton, O., Fagnot, I.: A first investigation of Sturmian
trees. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 73–84.
Springer, Heidelberg (2007)

4. de Luca, A., De Luca, A.: Pseudopalindrome closure operators in free monoids.
Theoret. Comput. Sci. 362(1-3), 282–300 (2006)

5. Droubay, X., Justin, J., Pirillo, G.: Epi-Sturmian words and some constructions of
de Luca and Rauzy. Theoret. Comput. Sci. 255(1-2), 539–553 (2001)

6. Justin, J., Pirillo, G.: On a characteristic property of Arnoux-Rauzy sequences.
Theor. Inform. Appl. 36(4), 385–388 (2002)

7. Justin, J., Pirillo, G.: Episturmian words and episturmian morphisms. Theoret.
Comput. Sci. 276(1-2), 281–313 (2002)

8. Justin, J.: Episturmian words and morphisms (results and conjectures). In: Crapo,
H., Senato, D. (eds.) Algebraic Combinatorics and Computer Science, pp. 533–539.
Springer, Heidelberg (2001)

9. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n+1.
Bull. Soc. Math. France 119, 199–215 (1991)

10. Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. Math. Systems
Theory 7, 138–153 (1973)

11. Allouche, J.P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity.
Theoret. Comput. Sci. 292(1), 9–31 (2003)

12. Baláži, P., Masáková, Z., Pelantová, E.: Factor versus palindromic complexity of
uniformly recurrent infinite words. Theoret. Comput. Sci. 380, 266–275 (2007)

13. Droubay, X., Pirillo, G.: Palindromes and Sturmian words. Theoret. Comput.
Sci. 223(1-2), 73–85 (1999)

14. Damanik, D., Zamboni, L.Q.: Combinatorial properties of Arnoux-Rauzy subshifts
and applications to Schrödinger operators. Rev. Math. Phys. 15(7), 745–763 (2003)

15. Avgustinovich, S.V., Fon-Der-Flaas, D.G., Frid, A.E.: Arithmetical complexity of
infinite words. In: Words, Languages and Combinatorics. Proc. 3rd Conf. Words,
Languages and Combinatorics, Kyoto, March 2000, vol. III, pp. 51–62. World Sci-
entific, Singapore (2003)

16. Cassaigne, J., Frid, A.E.: On the arithmetical complexity of Sturmian words. The-
oret. Comput. Sci. 380, 304–316 (2007)

17. Avgustinovich, S.V., Cassaigne, J., Frid, A.E.: Sequences of low arithmetical com-
plexity. Theor. Inform. Appl. 40(4), 569–582 (2006)

18. Kamae, T., Zamboni, L.Q.: Maximal pattern complexity for discrete systems. Er-
godic Theory Dynam. Systems 22(4), 1201–1214 (2002)

19. Kamae, T., Rao, H., Tan, B., Xue, Y.M.: Language structure of pattern Sturmian
words. Discrete Math. 306(15), 1651–1668 (2006)

20. Kamae, T., Rao, H.: Maximal pattern complexity of words over l letters. European
J. Combin. 27(1), 125–137 (2006)

21. Nakashima, I., Tamura, J.I., Yasutomi, S.I.: Modified complexity and ∗-Sturmian
word. Proc. Japan Acad. Ser. A Math. Sci. 75(3), 26–28 (1999)

22. Nakashima, I., Tamura, J.I., Yasutomi, S.I.: ∗-Sturmian words and complexity. J.
Theor. Nombres Bordeaux 15(3), 767–804 (2003)

23. de Luca, A.: Sturmian words: structure, combinatorics, and their arithmetics. The-
oret. Comput. Sci. 183(1), 45–82 (1997)

24. de Luca, A.: Combinatorics of standard Sturmian words. In: Mycielski, J., Rozen-
berg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science. LNCS,
vol. 1261, pp. 249–267. Springer, Heidelberg (1997)

25. Risley, R., Zamboni, L.Q.: A generalization of Sturmian sequences: combinatorial
structure and transcendence. Acta Arith. 95, 167–184 (2000)

46 J. Berstel

26. Glen, A.: Powers in a class of �-strict standard episturmian words. Theoret. Com-
put. Sci. 380, 330–354 (2007)

27. Tan, B., Wen, Z.Y.: Some properties of the Tribonacci sequence. European J.
Combin. (2007)

28. Chekhova, N., Hubert, P., Messaoudi, A.: Propriétés combinatoires, ergodiques et
arithmétiques de la substitution de Tribonacci. J. Theor. Nombres Bordeaux 13(2),
371–394 (2001)

29. Lothaire, M.: Applied Combinatorics on Words. Encyclopedia of Mathematics and
its Applications, vol. 105. Cambridge University Press, Cambridge (2005)

30. Series, C.: The geometry of Markoff numbers. Math. Intelligencer 7(3), 20–29 (1985)

31. Berthé, V., Ei, H., Ito, S., Rao, H.: Invertible substitutions and Sturmian words:
an application to Rauzy fractals. Theor. Inform. Appl. (to appear, 2007)

32. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics
and its Applications, vol. 90. Cambridge University Press, Cambridge (2002)

33. Pytheas Fogg, N.: Substitutions in dynamics, arithmetics and combinatorics. In:
Berthé, V., Ferenczi, S., Mauduit, C., Siegel, A. (eds.) Lecture Notes in Mathe-
matics, vol. 1794, Springer, Heidelberg (2002)

34. Christoffel, E.B.: Observatio arithmetica. Annali di Mathematica 6, 145–152 (1875)

35. Pirillo, G.: A curious characteristic property of standard Sturmian words. In:
Crapo, H., Senato, D. (eds.) Algebraic Combinatorics and Computer Science. A
tribute to Gian-Carlo Rota., pp. 541–546. Springer, Heidelberg (2001)

36. de Luca, A., Mignosi, F.: Some combinatorial properties of Sturmian words. The-
oret. Comput. Sci. 136(2), 361–385 (1994)

37. Borel, J.P., Reutenauer, C.: Palindromic factors of billiard words. Theoret. Com-
put. Sci. 340(2), 334–348 (2005)

38. de Luca, A., De Luca, A.: Combinatorial properties of Sturmian palindromes. In-
ternat. J. Found. Comput. Sci. 17(3), 557–573 (2006)

39. Carpi, A., de Luca, A.: Codes of central Sturmian words. Theoret. Comput.
Sci. 340(2), 220–239 (2005)

40. Berstel, J., de Luca, A.: Sturmian words, Lyndon words and trees. Theoret. Com-
put. Sci. 178(1-2), 171–203 (1997)

41. Berthé, V., de Luca, A., Reutenauer, C.: On an involution of Christoffel words and
Sturmian morphisms. In: European J. Combinatorics (in press, 2007)

42. Chuan, W.F.: Moments of conjugacy classes of binary words. Theoret. Comput.
Sci. 310(1-3), 273–285 (2004)

43. Jenkinson, O., Zamboni, L.Q.: Characterisations of balanced words via orderings.
Theoret. Comput. Sci. 310(1-3), 247–271 (2004)

44. de Luca, A., De Luca, A.: Some characterizations of finite Sturmian words. Theoret.
Comput. Sci. 356(1-2), 118–125 (2006)

45. Fagnot, I., Vuillon, L.: Generalized balances in Sturmian words. Discrete Appl.
Math. 121(1-3), 83–101 (2002)

46. Cassaigne, J., Ferenczi, S., Zamboni, L.Q.: Imbalances in Arnoux-Rauzy sequences.
Ann. Inst. Fourier (Grenoble) 50(4), 1265–1276 (2000)

47. Lipatov, E.P.: A classification of binary collections and properties of homogeneity
classes. Problemy Kibernet 39, 67–84 (1982)

48. Mignosi, F.: On the number of factors of Sturmian words. Theoret. Comput.
Sci. 82(1), 71–84 (1991)

49. Berstel, J., Pocchiola, M.: A geometric proof of the enumeration formula for Stur-
mian words. Internat. J. Algebra Comput. 3(3), 349–355 (1993)

Sturmian and Episturmian Words 47

50. Berstel, J., Pocchiola, M.: Random generation of finite Sturmian words. In: Pro-
ceedings of the 5th Conference on Formal Power Series and Algebraic Combina-
torics (Florence, 1993), vol. 153, pp. 29–39 (1996)

51. Berenstein, C.A., Lavine, D.: On the number of digital straight line segments. IEEE
Trans. Pattern Anal. Mach. Intell. 10(6), 880–887 (1988)

52. Koplowitz, J., Lindenbaum, M., Bruckstein, A.M.: The number of digital straight
lines on an n × n grid. IEEE Transactions on Information Theory 36(1), 192–197
(1990)

53. Heinis, A.: On low-complexity bi-infinite words and their factors. J. Theor. Nom-
bres Bordeaux 13(2), 421–442 (2001)

54. Tarannikov, Y.: On the bounds for the number of �-balanced words. Technical
report, Mech. & Math. Department, Moscow State University (2007)

55. Mignosi, F., Zamboni, L.Q.: On the number of Arnoux-Rauzy words. Boolean
Calculus of Differences 101(2), 121–129 (2002)

56. Paquin, G., Vuillon, L.: A characterization of balanced episturmian sequences.
Electronic J. Combinatorics 14(1) R33, pages 12 (2007)

57. Glen, A., Justin, J., Pirillo, G.: Characterizations of finite and infinite episturmian
words via lexicographic orderings. European Journal of Combinatorics (2007)

58. Pirillo, G.: Morse and Hedlund’s skew Sturmian words revisited. Annals Combi-
natorics (to appear, 2007)

59. Gan, S.: Sturmian sequences and the lexicographic world. Proc. Amer. Math.
Soc. 129, electronic, 1445–1451 (2001)

60. Glen, A.: A characterization of fine words over a finite alphabet. Theoret. Comput.
Sci. CANT conference, Liege, Belgium, May 8-19, 2007, 8–19 (to appear, 2007)

61. Pirillo, G.: Inequalities characterizing standard Sturmian and episturmian words.
Theoret. Comput. Sci. 341, 276–292 (2005)

62. Burrows, M., Wheeler, D.J.: A block sorting data compression algorithm. Technical
report, Digital System Research Center (1994)

63. Gessel, I., Reutenauer, C.: Counting permutations with given cycle structure and
descent set. J. Comb. Theory A 64, 189–215 (1993)

64. Crochemore, M., Désarménien, J., Perrin, D.: A note on the Burrows-Wheeler
transformation. Theoret. Comput. Sci. 332, 567–572 (2005)

65. Mantaci, S., Restivo, A., Sciortino, M.: Burrows Wheeler transform and Sturmian
words. Inform. Proc. Letters 86, 241–246 (2003)

66. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An extension of the Burrows
Wheeler transform. Theoret. Comput. Sci. (2007)

67. Rytter, W.: The structure of subword graphs and suffix trees of Fibonacci words.
Theoret. Comput. Sci. 363(2), 211–223 (2006)

68. Epifanio, C., Mignosi, F., Shallit, J., Venturini, I.: On Sturmian graphs. Discrete
Appl. Math 155, 1014–1030 (2007)

69. Blumer, A., Blumer, J.A., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas,
J.I.: The smallest automaton recognizing the subwords of a text. Theoret. Com-
put. Sci. 40(1), 31–55 (1985) (Special issue: Eleventh international colloquium on
automata, languages and programming, Antwerp, (1984)

70. Crochemore, M., Rytter, W.: Jewels of stringology. World Scientific Publishing Co.
Inc, River Edge, NJ (2003)

From Tree-Based Generators to

Delegation Networks

Frank Drewes

Department of Computing Science,
Ume̊a University, S–901 87 Ume̊a (Sweden)

drewes@cs.umu.se

Abstract. The first part of this paper is a brief survey on tree-based
generators, including some typical examples taken from the fields of
string, tree, graph, and picture generation. In the second part, an exten-
sion of the tree-based generator called delegation network is proposed.
Intuitively, a delegation network is a network of tree-based generators
that can “delegate” subtasks to each other. In this way, different types
of tree-based generators can be combined to generate complex objects.

1 Introduction

The theory of tree languages and tree transformations is an important and lively
field of theoretical computer science [GS84, NP92, GS97, FV98, CDG+02]. It
is concerned with formal devices that generate, recognize or transform trees.
A tree in this sense is a term, i.e., a formal expression composed of abstract
operation symbols. The usefulness of devices dealing with such trees is to a large
extent based on the fact that trees can be interpreted by choosing a domain A

and associating an operation on A (of the appropriate arity) with each symbol.
Thus, given such an interpretation, also called algebra, every tree denotes an
element of A. This means that a device generating trees provides the syntactic
basis for a tree-based generator – a system consisting of the tree generator and
an interpretation, that generates elements of A:

tree-based generator

tree generator interpretationgenerated
trees

generated
elements of A

Similarly, a device that transforms trees, together with two interpretations, can
be used to compute a function from A to B. The tree transformation can then
be seen as a symbolic algorithm [Eng80].

In this paper, we will focus on generation rather than transformation. We
will first recall the formal notions needed for the definition of tree-based gener-
ators, and give some examples from the areas of string, tree, graph, and picture
generation. Afterwards, a generalization called delegation network is proposed

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 48–72, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

From Tree-Based Generators to Delegation Networks 49

and illustrated by means of an example. A first attempt to formalize the notion
of delegation networks, and to prove some of their basic properties, was made
in [Dre07]. However, as pointed out by Engelfriet1, the evaluation of trees with
respect to nondeterministic algebras is not defined correctly in this paper, and
not all results (in particular the “Mezei&Wright-like” Theorem 5.9) hold for
the nondeterministic case. Therefore, the second part of the present paper tries
to formalize the notion of delegation networks in a more appropriate way, thus
laying the basis for future work in this area.

The purpose of delegation networks is to be able to combine several tree-based
generators (possibly of different types) with each other. Intuitively, a delegation
network consists of a finite number of tree-based generators that may “delegate”
parts of the generation process to each other. Roughly speaking, every delegating
generator in the network is associated with a symbol g : A1 × · · · × Ak → A from
a certain signature. The semantics of the delegation network interprets g as
a function g : A1 × · · · × Ak → A.2 Delegation means that another generator
from the network, associated with a symbol g′, can generate trees that contain
occurrences of g. If such a tree is evaluated, g is interpreted as g. Thus, the
interpretation g′ of g′ depends on g – and as delegation networks can be cyclic,
g may also depend on g′. For this reason, we choose a least fixed-point semantics
for delegation networks (Definition 5).

The structure of this paper is thus as follows. In the next section, the basic
notions regarding tree-based generators are recalled. In Section 3, the tree-based
versions of some well-known grammatical devices are discussed. Section 4 in-
troduces delegation networks, which are illustrated by means of an example in
Section 5. Section 6 concludes the paper.

2 Tree-Based Generators

Before recalling the notion of tree-based generators, let us summarize some stan-
dard notions and notation. Throughout this paper, N denotes the set of natural
numbers (including zero). For n ∈ N, the set {1, . . . , n} is denoted by [n]. The
powerset of a set A is denoted by ℘(A). A function f of arity 0 is identified with
the constant f().

2.1 Signatures and Trees

Let S be a set of sorts. An S-sorted signature (or just signature) is a finite set
Σ of symbols f, each of which has an associated profile A1 × · · ·× Ak → A, where
k ∈ N and A1, . . . , Ak, A ∈ S. To indicate that f has this profile, we also write
f : A1 × · · ·× Ak → A. The number k is also called the rank of f. Symbols of rank
0 are called constant symbols. We write the profile of a constant symbol without
the arrow, i.e., a : A, thus saying that its profile is A.
1 Personal communication.
2 Actually, these are nondeterministic rather than ordinary functions, but this is not

important for the moment.

50 F. Drewes

Given a sort A, the set of all trees of sort A over Σ is denoted by TA
Σ . By

definition, the sets TA
Σ are the smallest sets of strings simultaneously satisfying

the following conditions:

– For every a : A in Σ, the string a is in TA
Σ .

– For all f : A1 × · · · × Ak → A in Σ (k > 0) and all t1 ∈ TA1
Σ , . . . , tk ∈ TAk

Σ , the
string f[t1, . . . , tk] is in TA

Σ . (Here, the square brackets and the comma are
assumed to be special symbols not in Σ.)

The set TΣ of all trees over Σ is given by TΣ =
⋃

A∈S TA
Σ .

2.2 Algebras and Evaluation

Given an S-sorted signature Σ, a Σ-algebra (or just algebra) is a pair A =
(dom , σ). Here, dom is a domain mapping for S – a function assigning to every
sort A ∈ S a set dom(A) called its domain, and σ is the interpretation of symbols
– a function that assigns to every function symbol f : A1 × · · · × Ak → A in Σ a
corresponding function σ(f) : dom(A1)× · · · × dom(Ak) → dom(A). The function
σ is also called a (Σ, dom)-interpretation.

Throughout the rest of the paper, we will use the following typographical
conventions in connection with algebras, unless there is a risk of confusion: the
domain dom(A) assigned to a sort A is denoted by A, and the interpretation of
a symbol f is denoted by f . Using these conventions, defining an algebra means
to associate a domain A with every sort A, and a function f : A1 × · · · × Ak → A

with every function symbol f : A1 × · · · × Ak → A in Σ.
Given a Σ-algebra A, trees over Σ can be viewed as expressions that can be

evaluated. This evaluation, denoted by valA, is defined recursively, as one would
expect: valA(t) = f(valA(t1), . . . , valA(tk)) for every tree t = f[t1, . . . , tk] ∈ TΣ .
Note that the definition of TΣ makes sure that valA(t) is well defined. In the
following, we may write val(t) if A is understood.

Especially in examples, we shall frequently work with algebras over unsorted
signatures, which is an S-sorted signature such that S is a singleton {A}. In this
case, the notation f : Ak → A may be abbreviated as f(k). The (unique) domain
of an algebra A over Σ is denoted by dom(A).

2.3 Tree-Based Generators

A tree language is a subset of TA
Σ , for some S-sorted signature Σ and a sort

A ∈ S. A formal device γ defining a tree language L(γ) is called a tree generator.
If L(γ) ⊆ TΣ , then Σ is called the output signature of γ. (Thus, to be picky, one
should rather speak of an output signature of γ.)

Now, a tree-based generator is a pair G = (γ, A) that consists of a tree gener-
ator γ and a Σ-algebra A, where Σ is the output signature of γ. The language
generated by G is given by L(G) = {val(t) | t ∈ L(γ)}.

From Tree-Based Generators to Delegation Networks 51

2.4 TREEBAG

One of the advantages of the notion of tree-based generators is that it gives rise
to a flexible implementation in a rather straightforward manner. The system
Treebag [Dre06, Chapter 8] is such a system. It allows its user to interactively
load instances of a variety of tree generators (and tree transducers), algebras,
and so-called displays, and to establish input-output relations between them.
In this way, tree-based generators can be assembled, and displays that show
the resulting objects on the screen can be attached to them. The pictures in
Sections 3.4 and 3.5 have been created in this way. Moreover, the delegation
network discussed in Section 5 has been simulated in Treebag in order to
create the pictures shown.

3 Examples of Tree-Based Generators

We shall now discuss a few typical classes of tree-based generators. All of them
are based on tree generators with unsorted output signatures; sorted signatures
will become important in the next section.

Let us start with one of the simplest meaningful cases: the tree-based version
of string grammars.

3.1 String Generation

Let T be a set of symbols. We denote the set of all strings over T by T ∗, and
the empty string by ε.

Now, consider an unsorted signature Σ. The Σ-algebra AΣ,T , which allows
to assemble strings by means of concatenation, is given by

– dom(AΣ,T) = T ∗,
– a = a for every constant symbol in Σ which belongs to T , and
– f(u1, . . . , uk) = u1 · · · uk for all other symbols f(k) ∈ Σ and all strings

u1, . . . , uk ∈ T ∗. Thus, all symbols not in T are interpreted as concatenation
operators of the appropriate arity. In particular, f = ε for all f(0) ∈ Σ which
are not in T .

By definition, a tree-based generator of the form G = (γ, AΣ,T) generates a
string language L(G) ⊆ T ∗. Several types of string grammars well known from
traditional string language theory can be formulated in this way. In fact, histor-
ically, this was one of the motivations for developing a theory of tree languages
and tree transformations (see, e.g., [Rou70, Tha73]).

As one of the easiest examples, let us see how the context-free grammar can
be turned into a tree-based generator. For this, we use a tree generator known
as regular tree grammar, which is defined as follows. (As a minor extension of
the usual definition found in the literature, we define regular tree grammars
generating trees over sorted signatures.)

52 F. Drewes

Definition 1 (regular tree grammar). Let S be a set of sorts. A regular tree
grammar is a tuple γ = (Ξ, Σ, R, ξini), where

– Ξ is an S-sorted signature of constant symbols called nonterminals,
– Σ is an S-sorted signature of output symbols which is disjoint with Ξ,
– R is a finite set of rules ξ → r, where ξ ∈ Ξ and r ∈ TΣ∪Ξ are of the same

sort, and
– ξini ∈ Ξ is the initial nonterminal.

A derivation step s →γ t (or simply s → t, if γ is understood) consists of two
trees s, t ∈ TΣ∪Ξ such that t is obtained from s by replacing a single occurrence
of a nonterminal ξ with r, for some rule ξ → r in R. The tree language generated
by γ, called a regular tree language, is

L(γ) = {t ∈ TΣ | ξini →∗ t},

where →∗ denotes the transitive and reflexive closure of the relation →.

Now, let G = (Ξ, T, R, ξini) be a context-free grammar consisting, as usual,
of finite sets Ξ and T of nonterminal and terminal symbols, resp., a set R
of context-free rules, and an initial nonterminal ξini ∈ Ξ. We turn G into an
equivalent tree-based generator, as follows.

First, we need a suitable unsorted signature Σ. For each rule r = (ξ → u)
in R, let Σ contain a unique symbol r /∈ T of rank |u| (where |u| denotes the
length of u). In addition, Σ contains all symbols in T as symbols of rank 0.

Second, let γ = (Ξ, Σ, R′, ξini) be the regular tree grammar obtained by turn-
ing every rule (r = ξ → a1 · · · ak) in R (where a1, . . . , ak ∈ T) into a rule
ξ → r[a1, . . . , ak] in R′. It is an easy exercise to show that the tree-based gener-
ator G′ = (γ, AΣ,T) satisfies L(G′) = L(G). Every tree t generated by γ′, where
val(t) = u, corresponds to an abstract syntax tree of u with respect to G.

Of course, there are several natural ways to choose Σ in the previous con-
struction. For example, instead of including r for every rule r = (ξ → u), one
could choose a symbol ξ[k] of rank k = |u|. Then, the trees generated by γ would
correspond to the derivation trees of G. Another possibility is to include only
two symbols in addition to the symbols in T , namely ◦(2) and ε(0), and to use
rules of the form ξ → ◦[a1, ◦[· · · , ◦[ak, ε] · · ·]] in R′.

It is also easy to show that the construction can be reversed: for every tree-
based generator of the form (γ, AΣ,T), where γ is a regular tree grammar, there is
a context-free grammar generating the same language. Thus, a characterization
of the class of context-free languages in terms of languages generated by tree-
based generators has been obtained.

3.2 Tree Generation

Trivially, trees can be generated by tree-based generators. For this, just use a
tree-based generator G = (γ, A), where A is the free term algebra over the
output signature of γ. In this algebra, the interpretation of symbols is given by

From Tree-Based Generators to Delegation Networks 53

f(t1, . . . , tk) = f[t1, . . . , tk], which means that val is the identity on TΣ , and
L(G) = L(γ).

The situation becomes more interesting if A is not as simple as the free term al-
gebra. An important example for this is the so-called YIELD algebra (or YIELD
mapping, see [Mai74, Eng80, ES77, ES78, FV98, Dre06]), which formalizes the
construction of trees using variable substitution. We will only discuss the vari-
ant dealing with trees over an unsorted signature. The extension to arbitrary
S-sorted signatures is straightforward, but technical.

Let X = {x1, x2, . . . } be a countably infinite set of special symbols of rank
0, called variables. For l ∈ N, we let Xl denote {x1, . . . , xl}. For t, t1, . . . , tl ∈
TΣ∪X ,3 we let t[[t1, . . . , tl]] denote the tree obtained from t by simultaneously
replacing all occurrences of variables xi by ti (i ∈ [l]).

Definition 2 (YIELD algebra). Let Σ be an unsorted signature and let l ≥
max{k ∈ N | f(k) ∈ Σ}. The (unsorted) derived signature ΣY,l is given by

ΣY,l = {subst(l+1)} ∪ {f〈k〉(0) | f(k) ∈ Σ ∪ Xl}.

The YIELD algebra (with respect to Σ and l) is the ΣY,l-algebra Y such that

– dom(Y) = TΣ∪X,
– subst(t, t1, . . . , tl) = t[[t1, . . . , tl]] for all t, t1 . . . , tl ∈ TΣ∪X, and
– f 〈k〉 = f [x1, . . . , xk] for all f(k) ∈ Σ ∪ Xl.

Tree-based generators of the form G = (γ, Y), where γ is a regular tree gram-
mar, generate the so-called IO context-free tree languages. As an example, let
Σ = {f(2), g(2), a(0)}. We show how to generate the set of all trees of the form
t[[t′]], where t is an arbitrary tree over {f(2), x

(0)
1 }, and t′ is a totally balanced

tree over {g(2), a(0)}:

t

t′
t′

t′

. .
.

For this, use the regular tree grammar γ = ({ξini, ξarb, ξbal}, ΣY,2, R, ξini), where
R is given as in Table 1. In an IO context-free tree grammar, these rules would
be written as

ξini → ξarb[ξbal[a]],
ξarb[x1] → f[ξarb[x1], ξarb[x1]] | x1,
ξbal[x1] → ξbal[f[x1, x1]] | x1.

3 We use the notation TΣ∪X to abbreviate
⋃

l∈N
TΣ∪{x1,...,xl}.

54 F. Drewes

Table 1. Rules of a regular tree grammar that, in connection with the YIELD algebra
Y, mimics an IO context-free tree grammar, where ‘|’ is used to separate alternatives.
We choose l = 2 in Definition 2; hence, subst is of rank 3. For simplicity, we write
subst[t, t1] if the third subtree is uninteresting (i.e., would never be used). The right
column shows the rules in a partially evaluated form, obtained by recursively replacing
all subterms t = subst[h〈k〉, t1, . . . , tk] with t′ = h[t′

1, . . . , t
′
k] (and all h〈0〉 with their

values h).

Actual rules Simplified form

ξini → subst[ξarb, subst[ξbal, a
〈0〉]] ξini → subst[ξarb, subst[ξbal, a]]

ξarb → subst[f〈2〉, ξarb, ξarb] | x
〈0〉
1 ξarb → f[ξarb, ξarb] | x1

ξbal → subst[ξbal, subst[f
〈2〉, x

〈0〉
1 , x

〈0〉
1]] | x

〈0〉
1 ξbal → subst[ξbal, f[x1, x1]] | x1

3.3 Graph Generation

The tree-based perspective has turned out to be very fruitful in the area of
context-free graph grammars. The first paper investigating the generation of
context-free graph languages in a tree-based manner was [BC87]; see also the
surveys [Cou90, Eng97].

There are two major types of context-free graph languages: those generated
by hyperedge replacement (HR) and those generated by node replacement (NR).
Both have equivalent formulations in terms of tree-based generators, where the
underlying tree generator is the regular tree grammar. Thus, only the algebras
differ. Here, we will consider the HR case.

For simplicity, we restrict ourselves to directed unlabelled graphs. For tech-
nical reasons, these graphs are equipped with a number of distinguished nodes,
so-called ports. More precisely, a graph is a quadruple H = (V, E, att , port)
consisting of

– finite sets V and E of nodes and edges, resp.,
– a mapping att : E → V 2 assigning to every edge its attached nodes (i.e.,

att(e) = (v, v′) means that e points from v to v′), and
– a partial mapping port : N → V , the port labelling, which is defined on a

finite subset df (port) of N.

For i ∈ df (port), the node port(i) is called the i-port of H . Note that graphs
whose port labelling is the totally undefined function can be considered as or-
dinary graphs without ports. If a graph is of this kind, we may omit the fourth
component.

We consider the following two types of operations on graphs.4

1. Let H = (V, E, att , port) and H ′ = (V ′, E′, att ′, port ′) be graphs and as-
sume, without loss of generality, that V ∩ V ′ = ∅ = E ∩ E′ (otherwise, take

4 Strictly speaking, these operations work on abstract graphs (i.e., isomorphism classes
of graphs) rather than concrete ones. Intuitively, this means that isomorphic graphs
are considered to be the same.

From Tree-Based Generators to Delegation Networks 55

isomorphic copies). Let ≡ be the equivalence relation on V ∪V ′ generated by
{(port(i), port ′(i)) | i ∈ df (port) ∩ df (port ′)}. Then the parallel composition
par (H, H ′) of H and H ′ is obtained by taking their union and identifying
ports with the same label. Formally,

par(H, H ′) = (V ′′, E ∪ E′, att ′′, port ′′),

where
(a) V ′′ = {[v]≡ | v ∈ V ∪ V ′} is the set of equivalence classes of V ∪ V ′ with

respect to ≡,
(b) att ′′(e) = ([v]≡, [v′]≡) for e ∈ E with att(e) = (v, v′) or e ∈ E′ with

att ′(e) = (v, v′), and
(c) for all i ∈ df (port) ∪ df (port ′),

port ′′(i) =
{

[port(i)]≡ if i ∈ df (port)
[port ′(i)]≡ otherwise.

2. Given a partial function ρ : N → N which is defined on a finite subset df (ρ)
of N, the port relabelling of a graph H = (V, E, att , port) with respect to ρ is
given by relρ(H) = (V, E, att , port◦ρ). Here, port ◦ρ denotes the composition
of partial functions, i.e., (port ◦ ρ)(i) is defined if i ∈ df (ρ) and ρ(i) ∈
df (port), and yields port(ρ(i)) in this case.

Now, for an unsorted signature Σ, a Σ-algebra A is an HR Σ-algebra if it
has as its domain the set of all graphs, and Σ contains, in addition to a finite
number of constant symbols,

– the symbol par(2), which is interpreted as par , and
– finitely many symbols of the form rel

(1)
ρ (where ρ is as above), each of which

is interpreted as relρ.

Remark. For readers who wonder about the definition of NR algebras, it can be
mentioned that the graphs in NR algebras are allowed to contain any number of
distinct nodes with the same port label, i.e., port is turned into a binary relation
rather than a partial function. Moreover, let portsi(H) denote the set of all i-
ports of such a graph H . Instead of the operation par , NR algebras contain binary
operations connectC , where C is a binary relation on port labels. For graphs
H, H ′, connectC(H, H ′) is obtained by taking their disjoint union and adding,
for all (i, j) ∈ C and (v, v′) ∈ ports i(H) × portsj(H ′) ∪ ports i(H ′) × portsj(H),
an edge from v to v′. Thus, this operation connects the disjoint components H
and H ′ with edges according to C.

As an example, we consider an HR context-free graph grammar (i.e., a tree-
based generator consisting of a regular tree grammar and an HR algebra) that
generates the set of all wheels Wn, for n ≥ 1. Here, Wn = ({v0, v1, . . . , vn},
{e1, . . . , en, e′1, . . . , e′n}, att), where att(ei) = (v0, vi) (the “spokes” of the wheel)
and att(e′i) = (vi, v(i modn)+1) (the “rim”), for i ∈ [n]. For instance, Figure 1
shows W4.

56 F. Drewes

W4 =

Fig. 1. The wheel with four spokes

H1 =

1

2

3

H2 =
1, 2

Fig. 2. Graphs to compose wheels of; the numbers indicate the ports, e.g., the bottom
node of H1 is its 2-port

Our grammar assembles such wheels from the graphs shown in Figure 2. It
uses two nonterminals, ξini and ξ, and the rules

ξini → rel[][par[ξ, H2]]
ξ → rel⎡

⎣
1 �→ 1
2 �→ 4
3 �→ 3

⎤
⎦
[par[ξ, rel⎡

⎣
2 �→ 1
3 �→ 3
4 �→ 2

⎤
⎦
[ξ]]]

ξ → H1.

Here, a subscript of the form

⎡
⎢⎢⎣

i1
→ i′
1

...
ik
→ i′

k

⎤
⎥⎥⎦ denotes the partial function ρ : N → N

with df (ρ) = {i1, . . . , ik} and ρ(ij) = i′j for all j ∈ [k]. In the first rule, parallel
composition with H2 just means that the 1-port of the first argument is identified
with its 2-port, thus closing the rim, whereas the application of rel [] removes all
port labels. Of course, the second rule could be replaced by the linear rule

ξ → rel⎡
⎣
1 �→ 1
2 �→ 4
3 �→ 3

⎤
⎦
[par[ξ, rel⎡

⎣
2 �→ 1
3 �→ 3
4 �→ 2

⎤
⎦
[H1]]]

without affecting the generated language. Figure 3 indicates how to evaluate the
right-hand side of the second rule if both occurrences of ξ are replaced with H1.

Using an ET0L tree grammar (see Section 3.4) instead of a regular one, taking
the same rules but putting them into separate tables, the set of all wheels with
2n spokes would be generated, which is neither HR nor NR context free.

3.4 Generation of Line Drawings

Tree-based generation has also turned out to be very useful in the area of picture
generation, because several well-known devices generating pictures can be given a

From Tree-Based Generators to Delegation Networks 57

1

2

3

2

43 1

2

3 4 1 3 2

H1 H ′
1 = rel2

4
2 �→ 1
3 �→ 3
4 �→ 2

3
5
(H1)

(rotated by 90◦)

H = par(H1, H
′
1) rel2

4
1 �→ 1
2 �→ 4
3 �→ 3

3
5
(H)

Fig. 3. The evaluation of rel⎡
⎣
1 �→ 1
2 �→ 4
3 �→ 3

⎤
⎦
[par[H1, rel⎡

⎣
2 �→ 1
3 �→ 3
4 �→ 2

⎤
⎦
[H1]]]

tree-based definition.5 Two such devices are chain-code picture grammars and L-
systems with turtle interpretation. We will briefly discuss the latter, which can be
seen as an extension of the former. In its original definition, the turtle mechanism
interprets strings whose symbols are regarded as instructions to a plotter-like
device. It originated from the “turtle” of the programming language logo [Ad80]
and was made popular in the area of grammatical picture generation using L-
systems through the book by Prusinkiewicz and Lindenmayer [PL90]; see also
the later survey [PHHM97].

Let us say that a line drawing (in R
2) is a pair Δ = (D, e) consisting of a

finite set D of straight line segments and an end point e ∈ R
2. Furthermore,

choose two angles α0 and α. Given an unsorted signature Σ containing

Σturtle = {F(0), +(1), −(1), enc(1)}

as a subset, the turtle Σ-algebra6 A has as its domain the set of all line drawings.
The interpretation of symbols in Σ by A depends on α0 and α, and is given as
follows.

– F is the line drawing consisting of a single line segment extending one unit
from the origin into the direction given by α0. The end point of this line
segment is the end point of F .

– The symbols + and − are interpreted as rotation around the origin by α
and −α degrees, resp. Here, both the line segments and the end point are
rotated.

– The symbol enc is interpreted as encapsulation, replacing the end point of
the argument by the origin: enc(D, e) = (D, (0, 0)).

– Every symbol f(k) /∈ Σturtle is interpreted as the k-ary concatenation of line
drawings: f(Δ1, . . . , Δk) = (· · · (Δ1◦Δ2)◦· · ·)◦Δk, where Δ◦Δ′ is obtained
by translating Δ′ by the vector given by the end point of Δ and taking the
union of the sets of line segments of both. The translated end point of Δ′

becomes the end point of the resulting line drawing.

5 See [Dre06] for an extensive treatment of tree-based picture generation.
6 Slightly simplified, compared to [Dre06].

58 F. Drewes

As the turtle mechanism is usually studied in connection with L-systems,
let us recall the definition of ET0L tree grammars, which is the tree grammar
version of ET0L systems.

Definition 3 (ET0L tree grammar). Let S be a set of sorts. An ET0L tree
grammar is a tuple γ = (Ξ, Σ, R, t0) consisting of

– (not necessarily disjoint) S-sorted signatures Ξ and Σ of nonterminals (each
of rank 0) and output symbols, resp.,

– a finite set R of tables R1, . . . , Rn, each table being a finite set of rules as
in the case of regular tree grammars, and

– an axiom t0 ∈ TΣ∪Ξ .

To guarantee that Σ ∪ Ξ is a well-defined signature, it is required that each
nonterminal occurring in Σ has the same profile in both signatures. Moreover,
in each table Ri, every nonterminal is required to occur among the left-hand sides
of rules in Ri.

For trees s, t ∈ TΣ∪Ξ , there is a derivation step s ⇒γ t (or just s ⇒ t) if
there is a table Ri such that t can be obtained from s by simultaneously replacing
every occurrence of a nonterminal ξ by r, where Ξ → r is a rule in Ri. The
ET0L tree language generated by γ is given by

L(γ) = {t ∈ TΣ | t0 ⇒∗ t}.

A tree-based generator consisting of an ET0L tree grammar and a turtle alge-
bra is called an ET0L turtle grammar. Such grammars have been used quite
extensively to capture plant architecture by means of grammatical rules. To
discuss an example, let γ = (Ξ, Σ, {R1, R2}, ξini), where Ξ = {ξini, ξ}, Σ =
Ξ ∪ Σturtle ∪ {c(2)

2 , c
(3)
3 }, and

R1 = {ξini → c3[F, enc[+[c3[F, ξini, −[F]]]], enc[−[ξini]]], F → c2[F, ξini]},
R2 = {ξini → c3[F, enc[−[c3[F, ξini, +[F]]]], enc[+[ξini]]], F → c2[F, ξini]}.

Thus, γ is a so-called DT0L tree grammar: its tables are deterministic, and all
nonterminals are output symbols.

Note that derivations in γ never terminate. However, as Ξ ⊆ Σ, all trees that
are derivable from ξini are in L(γ). Now, let A be the turtle Σ-algebra with
α0 = 90◦ and α = 22.5◦. An initial part of a derivation in G = (γ, A) (i.e.,
a derivation in γ whose individual trees are interpreted using A) is shown in
Figure 4, while Figure 5 shows some randomly chosen pictures in L(G). Note that
the figures do not show correct relative sizes. As the pictures grow beyond any
bound as derivations get longer and longer, they must be scaled in an appropriate
manner.

3.5 Generation of Collages

Another well-known type of picture generator is the collage grammar, which was
originally introduced in [HK91] (see also [DK99] and, for the tree-based version,

From Tree-Based Generators to Delegation Networks 59

⇒ ⇒ ⇒ ⇒

⇒ ⇒ ⇒ · · ·

Fig. 4. An initial part of a derivation in an ET0L turtle grammar

Fig. 5. Pictures generated by an ET0L turtle grammar

60 F. Drewes

[Dre06]). Choose some dimension d ≥ 1. A collage in the Euclidean space R
d is a

finite set of parts, each part being a nonempty and bounded subset of R
d. Recall

that an affine transformation of R
d is a mapping of the form α(x) = Mx + b,

where M is a d × d matrix and b ∈ R
d. Such an affine transformation is applied

to a part in a pointwise manner. Applying it to a collage means to apply it to
each of its parts.

Now, given injective affine transformations α1, . . . , αk and a collage C, let
〈α1 · · · αk, C〉 denote the k-ary operation f on collages given by

f(C1, . . . , Ck) = C ∪
⋃

i∈[k]

αi(Ci).

As a side remark, it may be interesting to note that, in particular, f is equal
to the constant C if k = 0. Moreover, if C = ∅, then f is equal to the affine
transformation α1 (viewed as a unary operation on collages) if k = 1, and equal
to the union of collages if k = 2 and α1 = α2 = id (where id denotes the
identity). For many types of tree-based collage generators, these three types of
operations suffice to obtain the full generative power.

A collage algebra is a Σ-algebra whose domain is the set of all collages (in
R

d) and which interprets every symbol in Σ as a collage operation. Here, Σ is
any unsorted signature.

Let us briefly look at an example for d = 2 (taken from [Dre06]). We use an
EDT0L tree grammar7 γ whose nonterminals are ξini and ξ, and whose output
signature is Σ = {f(2), g(1), snail(0)}. The axiom consists of the nonterminal
ξini, and the tables are

{ξini → f[ξ, ξini], ξ → g[ξ]}, {ξini → snail, ξini → snail}.

Instead of giving a formal definition of the collage Σ-algebra A used to interpret
the trees in L(γ), let us show how the rules in the first table look if they are
interpreted in A. For this, we extend A to Σ ∪ Ξ, and interpret every constant
symbol as a part whose outline resembles a snail. To be able to distinguish
between the symbols, snail is filled with black, ξini with white, and ξ with
grey8. Using this interpretation of constant symbols, the two rules in the first
table look like this:

→ →

Clearly, each of the rules in the second table replaces the corresponding “non-
terminal snail” with the black one.
7 i.e., with deterministic tables.
8 Formally, the grey fill colour may be interpreted as a sparse area of the part, e.g., a

region where the part contains only rational points.

From Tree-Based Generators to Delegation Networks 61

⇒ ⇒ ⇒ ⇒

Fig. 6. Deriving a picture made of snails

Fig. 7. Many snails

In this example, all relevant derivations consist of a number of applications of
the first table, followed by one application of the second table. A short derivation
of this kind is shown in Figure 6, while Figure 7 shows a picture generated by a
rather long derivation.

3.6 Music Generation

Let us briefly mention that tree-based generators are even suitable for the gen-
eration of “music” – sound structures that adhere to certain basic rules of com-
position. A suitable algebra whose domain is the set of all musical pieces (in
a certain sense) is proposed in [DH07]. It contains operations that, e.g., invert
a piece, play it backwards, concatenate two pieces or create their overlay. In
[DH07], a tree generator consisting of a regular tree grammar and a sequence
of so-called tolerant top-down and macro tree transducers is used in connec-
tion with the music algebra in order to generate simple musical pieces. On
http://www.cs.umu.se/∼johanna/algebra, the implementation in Treebag

and some generated pieces can be found.

http://www.cs.umu.se/~johanna/algebra

62 F. Drewes

4 Delegation Networks

A potential application area of tree-based generators concerns the generation of
complex scenes involving structural, spatial, and pictorial elements. As an ex-
ample, one may think of a virtual reality consisting of streets, buildings, plants,
and other objects. For such an application, grammatical approaches to picture
generation could be particularly useful, as they allow to generate very detailed
models using simple and well-understood rules. As the previous section showed,
one may indeed speak of models being generated since most of these systems
actually do not generate pictures in a strict sense. Instead, they generate objects
having a natural pictorial representation. For example, a collage grammar in R

3

generates collections of three-dimensional objects that become pictures only if
they are passed through a ray tracer or similar software. Thus, in principle, a
collage grammar could be used to generate a virtual reality. For example, the
street shown in Figure 8 has been generated in Treebag using a collage gram-
mar designed by C. von Totth. Unfortunately, each of the grammatical picture
generators studied in the theoretical literature (such as ET0L turtle grammars
and collage grammars) is only suitable for generating a rather specific type of
structures. Moreover, the devices themselves provide no support for assembling
large systems from smaller components – which would certainly be needed for

Fig. 8. A street generated by a collage grammar (designed by C. von Totth)

From Tree-Based Generators to Delegation Networks 63

systems comprising thousands of rules or in a context where generators are de-
signed by a group of developers. A third disadvantage is that they provide no
means for integrating nongrammatical methods in an elegant way.

In this section, we propose the delegation network, a generalization of the
tree-based generator which tries to overcome these limitations by allowing to
combine several generating devices. A delegation network N contains a finite
number of so-called delegating generators, which are basically tree-based gener-
ators. However, each of them may “delegate” the generation of certain parts of
the object to other delegating generators in the network. Moreover, delegation
networks are based on many-sorted algebras whose predefined operations can be
nondeterministic. This makes it possible to

– modularize the generation of complex objects in a meaningful way,
– combine different classes of generators, each working on a part of the problem

and the domains it is appropriate for, and
– let parts of the generation task be performed by devices that are not tree

based, and possibly not even grammatical at all, by viewing them as nonde-
terministic predefined operations.

To understand the last item, imagine that we are given some implementation
of a (nongrammatical) method for generating random textures. We could then
use this device in order to define a nondeterministic operation that takes a
(grammatically generated) collage as input and applies nondeterministically one
of the randomly generated texture patterns to it.

Conceptually, delegation is easily achieved. The tree generator component γ
of a delegating generator (γ, A) generates trees each of whose symbols is either
interpreted by A or refers to another delegating generator of the network. The
second case is what gives rise to delegation.

To give the formal definition of delegation networks, some preliminaries are
needed. We start with the definition of nondeterministic functions.

4.1 Nondeterministic Functions and Algebras

A nondeterministic function from A1 × · · · × Ak to A is a function of the form
f : A1 × · · · × Ak → ℘(A). We identify f with the function f ′ : ℘(A1) × · · · ×
℘(Ak) → ℘(A) such that, for all A1 ⊆ A1, . . . , Ak ⊆ Ak,

f ′(A1, . . . , Ak) =
⋃

{f(a1, . . . , ak) | a1 ∈ A1, . . . , ak ∈ Ak}.

Further, we write f : A1 ×· · ·×Ak � A in order to indicate that f is a nondeter-
ministic function, and call A1 × · · · × Ak � A its (nondeterministic) profile. As
in the deterministic case, we write f : A instead of f : �A if k = 0, and identify
f with the set f() ⊆ A.

Note that a partial function f : A1 × · · · × Ak → A can be regarded as the
special case where |f(a1, . . . , ak)| ≤ 1 for all (a1, . . . , ak) ∈ A1 × · · · × Ak.

The basic definitions regarding signatures, trees, and algebras carry over from
the deterministic case. In an S-sorted signature Σ, profiles may from now on be

64 F. Drewes

nondeterministic (and a deterministic profile is regarded as a special case of a
nondeterministic one). The definition of trees over Σ and the related notation are
literally the same as in the deterministic case, except that → must be replaced
with �. Similarly, the definition of nondeterministic Σ-algebras and the related
notations carry over from the deterministic case by replacing → with �.

4.2 Evaluating Trees with Parameters in Nondeterministic Algebras

In the following, we want to represent complex operations by trees. For this
purpose, let us reserve a set of special symbols which represent the parameters of
such an operation. For every every sort A, let {xA

1, x
A
2, . . . } be a countably infinite

set of pairwise distinct parameter symbols of sort A. The parameter signature of
type A1 × · · · × Ak is the signature {xA1

1 , . . . , xAk

k }, containing the i-th parameter
symbol xAi

i of profile Ai for every i ∈ [k]. In the following, we will simply denote
xAi

i by xi. To avoid confusion, we assume that parameter symbols occur only in
parameter signatures, i.e., are not used as elements of ordinary signatures.

Given a nondeterministic Σ-algebra A and the parameter signature X of type
A1 ×· · ·×Ak, we can evaluate trees t ∈ TA

Σ∪X . The result of this evaluation is de-
noted by valXA(t). It is the function ϕ : A1×· · ·×Ak � A such that ϕ(a1, . . . , ak)
is given as follows, for all a1 ∈ A1, . . . , ak ∈ Ak:

– If t = xi, then ϕ(a1, . . . , ak) = {ai}.
– Otherwise, if t = f[t1, . . . , tn] with ϕi = valXA(ti) for all i ∈ [n], then

ϕ(a1, . . . , ak) = f(ϕ1(a1, . . . , ak), . . . , ϕn(a1, . . . , ak)).

Given a set T ⊆ TA
Σ∪X of trees rather than a single tree, we let valXA(T) = Φ,

where Φ(a1, . . . , ak) =
⋃

t∈T valXA (t)(a1, . . . , ak).
During the rest of this paper, we will drop the qualifier nondeterministic when

talking about nondeterministic Σ-algebras.

4.3 The Definition and Semantics of Delegation Networks

For the formal definition of delegation networks, one additional notion is needed.
Consider an S-sorted signature Σ and a Σ-algebra A = (dom , σ). Given a do-
main mapping dom ′ for another set S′ of sorts, A is said to be dom ′-compatible
if dom(A) = dom ′(A) for all A ∈ S ∩ S′.

Now, the formal definition of delegation networks reads as follows.

Definition 4 (delegation network). A delegation network is a system N =
(Σ, dom , G, g0), where

– Σ is an S-sorted signature of generator symbols, for some set S of sorts,
– dom is a domain mapping for S,
– g0 is a constant symbol in Σ, and
– G = (Gg)g∈Σ is a Σ-indexed family of delegating generators Gg = (γg, Ag),

where, for every generator symbol g : A1 × · · · × Ak � A,

From Tree-Based Generators to Delegation Networks 65

• Ag is a dom-compatible Σg-algebra, for some signature Σg disjoint with
Σ, and

• γg is a tree generator such that L(γg) ⊆ TA
Σg∪Σ∪X, where X is the pa-

rameter signature of type A1 × · · · × Ak.

The semantics of N is obtained by constructing a Σ-algebra AN . Intuitively, a
symbol g ∈ Σ is interpreted by evaluating the trees in L(γg). To see what this
means, let t ∈ L(γg). According to Definition 4, every non-parameter symbol
f : A1 × · · · × Ak � A occurring in t is either interpreted by Ag or a generator
symbol. Thus, both cases yield an appropriate interpretation of f (using recursion
if f ∈ Σ), which can be used to evaluate t in the way defined earlier.

However, unfortunately, the situation is not as simple as it intuitively might
seem, because delegation networks can be cyclic. This invalidates the simple
inductive definition the previous paragraph may have suggested. For this reason,
we choose a least fixed-point semantics for delegation networks.

For this purpose, we turn the set of all functions of f, g : A1×· · ·×Ak � A into
a complete lattice by defining f ≤ g if and only if f(a1, . . . , ak) ⊆ g(a1, . . . , ak),
for all a1 ∈ A1, . . . , ak ∈ Ak. This extends to (Σ, dom)-interpretations σ, σ′,
where Σ is S-sorted, in the obvious way: σ ≤ σ′ if and only if σ(f) ≤ σ′(f) for
all f ∈ Σ.

For the following definition, if A = (dom , σ) and A′ = (dom ′, σ′) are Σ- and
Σ′-algebras, resp., where Σ and Σ′ are disjoint and A′ is dom-compatible, we
let A ∪ A′ denote the Σ ∪ Σ′-algebra (dom ′′, σ′′) such that dom ′′(A) = dom(A)
for all A ∈ S and

σ′′(f) =
{

σ(f) if f ∈ Σ
σ′(f) otherwise.

We are now ready to define the semantics of delegation networks.

Definition 5 (semantics of delegation networks). Let N = (Σ, dom , G, g0)
be a delegation network.

1. The operator iterateN on (Σ, dom)-interpretations σ is defined as follows:
iterateN (σ) is the (Σ, dom)-interpretation σ′ such that, for every symbol
g : A1 × · · · × Ak � A in Σ,

σ′(g) = valXAg∪(dom,σ)(L(γg)),

where X is the parameter signature of type A1 × · · · × Ak.
2. The least fixed point of iterateN is denoted by σN , and AN = (dom , σN).

(Note that, by construction, iterateN is monotonically increasing. Thus, by
Tarski’s fixed-point theorem, it has a least fixed point.)

3. The language generated by N is L(N) = σN (g0).

It should be noticed that, for a delegation network as above and g ∈ Σ, σN (g)
is just valXAg

(L(γg)) if no symbols from Σ appear in the trees generated by γg.
Thus, a tree-based generator can be identified with a delegation network in which
Σ = {g0}, γ(g0) has the output signature Σg0 (i.e., does not delegate to itself),
and Ag0 is a deterministic Σg0-algebra.

66 F. Drewes

From an implementation point of view, one may think of each delegating
generator Gg in N as a nondeterministic device working as follows. Let the
profile of g be A1 ×· · ·×Ak � A, and let a1 ∈ A1, . . . , ak ∈ Ak be arguments. We
may then nondeterministically “execute” Gg in order to produce an element of
the set g(a1, . . . , ak). For this purpose, we first run γg as a tree generator, which
produces a tree t ∈ TA

Σg∪Σ∪X . The tree t is evaluated in a bottom-up manner by
nondeterministically assigning a value to each of its nodes. To each leaf carrying
a variable xi ∈ X , the value ai is assigned. Now, consider the root node of a
subtree s /∈ X with direct subtrees s1, . . . , sl, and suppose that we have already
assigned values b1, . . . , bl to its direct descendants, i.e., to the roots of s1, . . . , sl.
There are two cases.

– If s = f[s1, . . . , sl] with f ∈ Σg, we choose nondeterministically any element
of f(b1, . . . , bl) (where f is the interpretation of f in Ag) as the value of s.

– If s = g′[s1, . . . , sl] with g′ ∈ Σ, we create (recursively) an instance of Gg′ ,
apply it to the arguments b1, . . . , bl, and consider the result to be the value
assigned to the root node of s.

Without the last case, this is just the evaluation of trees with respect to
Ag, in the sense that the set of all possible results that can be obtained equals
valXAg

(t)(a1, . . . , ak). Thus, the base case is the one where t ∈ TΣg∪X , as such
trees can be evaluated directly. Of course, a naive implementation may lead to
an infinitely descending recursion because of the second case, if the delegation
structure is cyclic. Thus, some care must be taken in an implementation.

5 An Example

Let us now consider an example. We make use of two domains, namely the set
C of collages in R

2 and the set N of natural numbers. The corresponding sorts
are C and N, resp. This defines the domain mapping dom to be used throughout
this section, i.e., dom(N) = N and dom(C) = C. As operations on N, we use
the constant 0 and the successor function s. The operations on C used are of
two different types. On the one hand, we use the collage operations explained in
Section 3.5. One the other hand, we turn cellular automata into operations on
collages. For this, let us first recall what a cellular automaton is.

The concept of cellular automata (CA) was developed by von Neumann, with
contributions by Ulam, Zuse, and others, in the middle of the last century. A
(two-dimensional) CA CA is a parallel device that operates on an infinite two-
dimensional array of cells cell ij (i, j ∈ Z). Geometrically, we identify the cell
cell ij with the unit square whose lower left corner has the coordinates (i, j). The
cellular automaton consists of two components. The first is a set Q = {0, . . . , k}
of states, where k > 0. At each moment in time, every cell contains one of
these states. The second component of CA is a transition function of the form
Δ : Q3×3 → Q, where Δ(000

000
000

) = 0. Initially, the so-called inactive state 0 is
assigned to all cells cell ij except cell00, which is assigned the state 1. In each
step, all cells synchronously update their states according to Δ and the states of

From Tree-Based Generators to Delegation Networks 67

cells in their neighbourhood. More precisely, each cell cell ij changes its state to
Δ(N), where N is the 3 × 3 array of states of its neighbouring cells (including
cell ij itself), i.e., the states of the cells cellpq such that i − 1 ≤ p ≤ i + 1 and
j − 1 ≤ q ≤ j + 1. For example, after the first step, the state of cell00 will be
Δ(000

010
000

), and the state of cell11 will be Δ(000
000
100

) since cell11 has cell00 as its lower
left neighbour. Note that the number of active cells will always remain finite,
because Δ(000

000
000

) = 0.
Now, to turn a cellular automaton CA as above into an operation acting on

collages, we view it as a function CA : N × C
k → C, where CA(n, C1, . . . , Ck)

is obtained as follows. First, CA is executed n steps. Then, for every cell whose
current state is q ∈ [k], a copy of Cq is horizontally and vertically scaled and
translated in such a way that the cell cell ij becomes its bounding box9. The
resulting collage is the union of all these transformed copies of C1, . . . , Ck.

Note that one could alternatively view CA as a nondeterministic function
CA′ : C

k � C, where CA′(C1, . . . , Ck) = {ca(n, C1, . . . , Ck) | n ∈ N}. Obviously,
this would not allow for as much control as the variant used here.

In the following, we use only one nontrivial cellular automaton CA, where
k = 3. Rather than defining CA formally, let us use a delegation network
N0 = ({g0 : C}, dom , (γg0 , Ag0), g0) containing only one delegating generator,
to show how CA behaves. The algebra Ag0 contains the operations CA, 0, s, and
constant collages Ci, 1 ≤ i ≤ 3. The Ci are hollow squares with different figures
placed inside: a square with indented edges, a triangle, and a hollow circle, resp.
The tree generator γg0 is a regular tree grammar generating the tree language
{CA[sn[0], C1, C2, C3] | n ∈ N}.10 The obvious definition of γg0 is omitted here.
The resulting collages for 0 ≤ i ≤ 6 are shown in Figure 9.

Fig. 9. Initial steps of the cellular automaton CA

Now, let us discuss a delegation network N = (Σ, dom , G, g) that makes use
of CA in a slightly more interesting way. The signature Σ consists of the symbols
g : C, ca : N× C3 � C, and ifs : C � C. The delegation structure in this example
is such that g uses the other two, and ifs delegates to itself. All tree generators
employed are regular tree grammars.
9 For the purpose of this example, we may disregard collages Cq for which such a

scaling is impossible.
10 As usual, s0[0] = 0 and si+1[0] = s[si[0]] for all i ∈ N.

68 F. Drewes

Let us first discuss (γifs, Aifs), which basically implements an iterated func-
tion system. To achieve this, the tree generator γifs generates the finite tree
language {x1, ifs[f[x1, x1, x1]]}. In Aifs, f is interpreted as a collage opera-
tion f of the form 〈α1α2α3, line〉, where the transformations α1, α2, α3 and the
collage line are chosen in such a way that, e.g.,

f(, ,) = .

As a consequence of the fact that L(γifs) = {x1, ifs[f[x1, x1, x1]]}, the appli-
cation of ifs = σN (ifs) to a collage C yields C and all collages obtained by
applying ifs recursively to f(C, C, C). Thus, for example, ifs() yields the set of
collages indicated in Figure 10.

. . .

Fig. 10. Collages generated by ifs, if applied to (up to scaling)

Now, let us discuss Gca = (γca, Aca). The tree generator γca is the regular tree
grammar having only one nonterminal ξini : C and the rules

ξini → CA[x1, ξini, x3, x4],
ξini → CA[x1, x2, x3, x4].

The cellular automaton CA (i.e., the interpretation of the symbol CA) is as before.
Obviously, γca generates all trees

CA[x1, CA[x1, . . .CA[x1, x2, x3, x4] . . . , x3, x4], x3, x4].

Note that the recursion takes place in the argument corresponding to state 1 of
CA (i.e., where Figure 9 contains a copy of), and all instances of CA perform
the same number of steps, as determined by the parameter x1.

Finally, the first component of Gg = (γg, Ag) is the regular tree grammar with
nonterminals ξini : C and ξ : N, and the rules

ξini → ca[ξ, , ifs[],],
ξ → s[ξ],
ξ → 0.

In Ag, , , and are interpreted as the collages consisting of the correspond-
ing parts (and s and 0 are interpreted as successor, s, and zero, 0). Thus, the
purpose of Gg in this example is to provide Gca with sample arguments. From
the point of view of γg, the only argument that is not fixed, but generated in
a nondeterministic manner, is the first one, determining how many steps CA

From Tree-Based Generators to Delegation Networks 69

Fig. 11. Collages generated by the delegation network N

is executed. However, actually, even the third argument is nondeterministic, as
ifs() is not a single collage, but the set displayed in Figure 10.

Figure 11 shows some of the collages in L(N). They result from the trees
ca[si[0], , ifs[],] in L(γg), for i = 0, . . . , 3 (top) and i = 5 (bottom). Among
the trees in L(γca), the tree CA[x1, CA[x1, x2, x3, x4], x3, x4] has been used. The

70 F. Drewes

reader may find it instructive to compare this figure with Figure 9, in order to
discover where the structures in Figure 9 reappear in Figure 11.

6 Conclusion and Outlook

In this paper, we have given a brief survey of tree-based generators, and have
introduced the delegation network as a generalization. Future work should study
both theoretical and practical issues regarding delegation networks, and provide
an implementation.

Some initial results regarding delegation networks are given in [Dre07]. How-
ever, as mentioned in the introduction, evaluation in nondeterministic algebras
is not correctly defined in this paper. Thus, the results of [Dre07] should be
taken with care. However, under the assumption that the union Σ∪ of the
signatures Σg, g ∈ Σ, is well defined, it is clear that a delegation network
N = (Σ, dom , G, g0) can be used to generate a tree language T (N) by defining
T (N) = L(N ′), where N ′ is obtained from N by

1. replacing dom with dom ′, where dom ′(A) = TA
Σ∪

for every sort A, and
2. replacing each Ag (g ∈ Σ) with the free term algebra over Σ∪.

Now, if the algebras Ag are deterministic and satisfy some reasonable compat-
ibility requirements (i.e., do not interpret common sorts or function symbols
differently), the “Mezei&Wright-like” result L(N) = valA(T (N)) holds, where
A is the union of the algebras Ag. For the case of nondeterministic algebras, a
counterexample was given in [ES78, p. 72]. In fact, looking at the notions and
results in [ES77, ES78], it seems that T (N) can be characterized by a generalized
version of IO context-free tree grammars. Together with the Mezei&Wright-like
result, this would yield an equivalent operational semantics for delegation net-
works whose algebras are deterministic (or, in other words, a characterization in
terms of tree-based generators).

As delegation networks can generate tree languages, they can take the role
of tree generators in delegation networks. A characterization of the tree lan-
guages T (N) in terms of extended IO context-free tree grammars may also
help to understand the resulting delegation hierarchy (DELn(REG))n∈N. Here,
DELn(REG) is the class of tree languages generated by DELn(REG), which is de-
fined as follows: REG is the class of all regular tree grammars, and DELn+1(REG)
is the set of all delegation networks in which each γg is in DELn(REG).

Let us now discuss some more practical issues. Future plans include the im-
plementation of a system that allows to define and execute delegation networks
in a flexible and, to the extent possible, efficient manner. The flexibility of this
system should preferably be similar to that of the system Treebag (see Sec-
tion 2.4). However, in contrast to Treebag, whose implementation does not
pay much attention to practical issues such as efficiency and usability for large
examples, the development of the new system should address these points in
particular.

In connection with this, it would be interesting to study the parallel and dis-
tributed execution of delegating generators. As indicated at the end of Section 4,

From Tree-Based Generators to Delegation Networks 71

one may view a delegating generator (γg, Ag) belonging to a delegation network
N = (Σ, dom , G, g0) as a device that, internally, generates a tree (in a nondeter-
ministic fashion) and evaluates it to a (nondeterministic) function. To be able to
evaluate the tree, it creates an instance I of (γg′ , Ag′) for every occurrence of a
symbol g′ ∈ Σ it generates (which, at least for regular and ET0L tree grammars,
can be done as soon as the occurrence is generated). The function eventually re-
turned by I is then used as the interpretation of the given occurrence of g′. The
instances of delegating generators resulting from this process are independent of
each other (except for the fact that parent instances have to wait for their children
during the evaluation process), it should be possible to execute them in parallel
or even distribute their execution over a cluster of processors or machines.

Another question that future investigations may address is dynamic execution.
Especially in the generation of graphical scenes, a derivation can often be seen
as a development in time (cf. Figure 4). In terms of the discussion above, this
would mean that an instance of a delegating generator does not terminate when
it has reported the evaluation of its generated tree to its parent. Instead, it may
perform further derivation steps, each time reporting the accordingly updated
evaluation to its parent. To do this in an efficient manner, one needs to develop
incremental techniques that avoid full re-evaluation in each step. This seems to
be an interesting research question – as is the theoretical question of defining a
suitable “dynamic semantics” for delegation networks.

Acknowledgment. I thank Joost Engelfriet for pointing out problems with the
basic definitions (and, thus, results) of [Dre07] and suggesting possible remedies
to me. Furthermore, I thank Carolina von Totth for allowing me to include the
picture shown in Figure 8.

References

[Ad80] Abelson, H., diSessa, A.: Turtle Geometry: The Computer as a Medium
for Exploring Mathematics. MIT Press, Cambridge, MA (1980)

[BC87] Bauderon, M., Courcelle, B.: Graph expressions and graph rewriting.
Mathematical Systems Theory 20, 83–127 (1987)

[CDG+02] Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Ti-
son, S., Tommasi, M.: Tree Automata Techniques and Applications (2002)
available at, http://www.grappa.univ-lille3.fr/tata

[Cou90] Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van
Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp.
193–242. Elsevier, Amsterdam (1990)

[DH07] Drewes, F., Högberg, J.: An algebra for tree-based music generation. In:
Bozapalidis, S., Rahonis, G. (eds.) Cryptography and Coding 2007. LNCS,
vol. 4728, pp. 161–173. Springer, Heidelberg (2007)

[DK99] Drewes, F., Kreowski, H.-J.: Picture generation by collage grammars. In:
Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) Handbook
of Graph Grammars and Computing by Graph Transformation. Applica-
tions, Languages, and Tools, ch. 11, vol. 2, pp. 397–457. World Scientific,
Singapore (1999)

http://www.grappa.univ-lille3.fr/tata

72 F. Drewes

[Dre06] Drewes, F.: Grammatical Picture Generation – A Tree-Based Approach.
In: Texts in Theoretical Computer Science. An EATCS, Springer, Heidel-
berg (2006)

[Dre07] Drewes, F.: Delegation networks. Report UMINF 07.04, Ume̊a University
(2007)

[Eng80] Engelfriet, J.: Some open questions and recent results on tree transduc-
ers and tree languages. In: Book, R.V. (ed.) Formal Language Theory:
Perspectives and Open Problems, pp. 241–286. Academic Press, London
(1980)

[Eng97] Engelfriet, J.: Context-free graph grammars. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages. Beyond Words, ch. 3, vol. 3, pp.
125–213. Springer, Heidelberg (1997)

[ES77] Engelfriet, J., Schmidt, E.M.: IO and OI. I. Journal of Computer and
System Sciences 15, 328–353 (1977)

[ES78] Engelfriet, J., Schmidt, E.M.: IO and OI. II. Journal of Computer and
System Sciences 16, 67–99 (1978)

[FV98] Fülöp, Z., Vogler, H.: Syntax-Directed Semantics: Formal Models Based
on Tree Transducers. Springer, Heidelberg (1998)

[GS84] Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest
(1984)

[GS97] Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages. Beyond Words, ch.1, vol. 3, pp.
1–68. Springer, Heidelberg (1997)

[HK91] Habel, A., Kreowski, H.-J.: Collage grammars. In: Ehrig, H., Kreowski, H.-
J., Rozenberg, G. (eds.) Graph Grammars and Their Application to Com-
puter Science. LNCS, vol. 532, pp. 411–429. Springer, Heidelberg (1991)

[Mai74] Maibaum, T.S.E.: A generalized approach to formal languages. Journal of
Computer and System Sciences 8, 409–502 (1974)

[NP92] Nivat, M., Podelski, A. (eds.): Tree Automata and Languages. Elsevier,
Amsterdam (1992)

[PHHM97] Prusinkiewicz, P., Hammel, M., Hanan, J., Měch, R.: Visual models of
plant development. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages. Beyond Words, ch. 9, vol. 3, pp. 535–597. Springer,
Heidelberg (1997)

[PL90] Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants.
Springer, Heidelberg (1990)

[Rou70] Rounds, W.C.: Mappings and grammars on trees. Mathematical Systems
Theory 4, 257–287 (1970)

[Tha73] Thatcher, J.W.: Tree automata: an informal survey. In: Aho, A.V. (ed.)
Currents in the Theory of Computing, pp. 143–172. Prentice-Hall, Engle-
wood Cliffs (1973)

Bifinite Chu Spaces

Manfred Droste1 and Guo-Qiang Zhang2

1 Institute of Computer Science
Leipzig University, 04158 Leipzig, Germany

droste@informatik.uni-leipzig.de
2 Department of Electrical Engineering and Computer Science

Case Western Reserve University
Cleveland, Ohio 44106, U.S.A.

gq@case.edu

Abstract. This paper studies colimits of sequences of finite Chu spaces
and their ramifications. We consider three base categories of Chu spaces:
the generic Chu spaces (C), the extensional Chu spaces (E), and the
biextensional Chu spaces (B). The main results are

– a characterization of monics in each of the three categories;
– existence (or the lack thereof) of colimits and a characterization of

finite objects in each of the corresponding categories using monomor-
phisms/injections (denoted as iC, iE, and iB, respectively);

– a formulation of bifinite Chu spaces with respect to iC;
– the existence of universal, homogeneous Chu spaces in this category.

Unanticipated results driving this development include the fact that:

– in C, a morphism (f, g) is monic iff f is injective and g is surjective
while for E and B, (f, g) is monic iff f is injective (but g is not
necessarily surjective);

– while colimits always exist in iE, it is not the case for iC and iB;
– not all finite Chu spaces (considered set-theoretically) are finite ob-

jects in their categories.

Chu spaces are a general framework for studying the dualities of objects
and properties; points and open sets; terms and types, under rich math-
ematical contexts, with important connections to several sub-disciplines
in computer science and mathematics. Traditionally, the study on Chu
spaces had a “non-constructive” flavor. There was no framework in which
to study constructions on Chu spaces with respect to their behavior in
permitting a transition from finite to infinite in a continuous way and
to study which constructs are continuous functors in a corresponding
algebroidal category. The work presented here provides a basis for a con-
structive analysis of Chu spaces and opens the door to a more systematic
investigation of such an analysis in a variety of settings.

References

1. Droste, M., Zhang, G.-Q.: Bifinite Chu spaces. In: Mossakowski, T., Montanari,
U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 179–193. Springer,
Heidelberg (2007)

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 73–74, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

74 M. Droste and G.-Q. Zhang

2. Plotkin, G.: A powerdomain construction. SIAM J. Comput. 5, 452–487 (1976)
3. Pratt, V.: Chu spaces. School on Category Theory and Applications, Textos Mat.

SCr. B 21, 39–100 (1999)
4. Zhang, G.-Q.: Chu spaces, concept lattices, and domains. In: Proceedings of the 19th

Conference on the Mathematical Foundations of Programming Semantics, Montreal,
Canada, March 2003. Electronic Notes in Theoretical Computer Science, vol. 83, 17
pages (2004)

Tiling Recognizable Two-Dimensional

Languages�

Dora Giammarresi

Dipartimento di Matematica. Università di Roma “Tor Vergata”
via della Ricerca Scientifica, 00133 Roma, Italy

giammarr@mat.uniroma2.it

Abstract. Tiling recognizable two-dimensional languages generalizes
recognizable string languages to two dimensions and share with them
several properties. Nevertheless two-dimensional recognizable languages
are not closed under complement and this implies that are intrinsically
non-deterministic. We introduce the notion of deterministic and unam-
biguous tiling system that generalizes deterministic and unambiguous
automata for strings and show that, differently from the one-dimensional
case, there exist other distinct classes besides deterministic, unambigu-
ous and non-deterministic families that can be separated by means of
examples and decidability properties. Finally we introduce a model of
automaton, referred to as tiling automaton, defined as a scanning strat-
egy plus a transition function given by a tiling system. Languages recog-
nized by tiling automata are compared with ones recognized by on-line
tesselation automata and four-way automata.

Keywords: Automata and Formal Languages, Two-dimensional lan-
guages, Tiling systems, Unambiguity, Determinism.

1 Introduction

Two-dimensional languages are sets of pictures or two-dimensional arrays of sym-
bols chosen in a finite alphabet. The increasing interest for pattern recognition
and image processing has motivated the research on two-dimensional (2D for
short) languages, and nowadays this is a research field of great interest. Since
sixties, many approaches have been presented in the literature in order to find
in 2D a counterpart of what regular languages are in one dimension (1D): finite
automata, grammars, logics and regular expressions. Among automata models
we recall four-way automata ([6]), on-line tesselation automata ([13]) and the
more recent quadrapolic automata ([8]). In this paper we mainly refer to a some-
how unifying point of view presented by A. Restivo and D. Giammarresi in 1991
who defined the family REC of recognizable picture languages (see [10] and [11]).
This definition takes as starting point a characterization of recognizable string

� This work was partially supported by PRIN project Linguaggi Formali e Automi:
aspetti matematici e applicativi.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 75–86, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

76 D. Giammarresi

languages in terms of local languages and projections (cf. [9]): the pair of a local
picture language and a projection is called tiling system.

REC family inherits several properties from the class of regular string lan-
guages. A crucial difference lies in the fact that the definition of recognizability
by tiling systems is intrinsically non-deterministic. Deterministic machine mod-
els to recognize two-dimensional languages have been considered in the liter-
ature: they always accept classes of languages smaller than the corresponding
non-deterministic ones (see for example, [6,13,19]). This seems to be unavoidable
when jumping from one to two dimensions. Further REC family is not closed
under complement and therefore the definition of any constraint to force deter-
minism in tiling systems should necessary result in a class smaller than REC.

In formal language theory, an intermediate notion between determinism and
non-determinism is the notion of unambiguity. In an unambiguous model, we
require that each accepted object admits only one successful computation. Both
determinism and unambiguity correspond to the existence of a unique process of
computation, but while determinism is a ”local” notion, unambiguity is a fully
”global” one. Unambiguous recognizable two-dimensional languages have been
introduced in [10], and their family is referred to as UREC. Informally, a picture
language belongs to UREC when it admits an unambiguous tiling system, that is
if every picture has a unique counter-image in its corresponding local language;
and this is an ”orientation-free” notion. In [4], the proper inclusion of UREC in
REC is proved.

Then we provide a definition of deterministic recognizable picture languages
based on the formalism of tiling system, that generalizes 1D case.

The definition of determinism we introduce consists of a property on the tiling
system (i.e. the undirected transitions of the automata in the 1D case) that leads
to no backtracking in any reasonable associated ”computation”. Furthermore
determinism is a decidable property that implies unambiguity and polynomial
parsing. More in details we will define four types of determinism, one for each
corner-to-corner direction of reading of a picture. Observe that this is also the
case for string languages. The notion of determinism on strings is somehow an
”oriented” notion. When a set of undirected transitions is given for strings, there
are two notions of determinism according to the reading direction: determinism
(from left-to-right) and co-determinism (from right-to-left). Deterministic Rec-
ognizable Languages are defined as languages that admit a deterministic tiling
system along one of the four corner-to-corner directions: DREC denotes the
class of all deterministic recognizable languages. As one would expect DREC
class results to be closed under complement. We show that also DREC is prop-
erly included in UREC. Hence DREC⊂ UREC ⊂ REC, differently from the 1D
case where all the corresponding classes collapse. Then we further strengthen this
result and show that there is a very rich hierarchy of classes between determin-
ism and non -determinism in 2D. We exhibit some classes, denoted Col-UREC
and Row-UREC, that strictly separate DREC from UREC. Recall that DREC
is the class of languages that can be accepted with backtracking zero at each
step of the computation while UREC languages may require backtracking linear

Tiling Recognizable Two-Dimensional Languages 77

in the size of the pictures during computation. (Remark that recall that parsing
for 2D languages is a NP-complete problem [15].) As intermediate classes, Col-
UREC and Row-UREC are defined in such a way to have backtracking at most
linear in one dimension of the picture at each step of its computation: they are
defined by means of column-unambiguous and row-unambiguous tiling systems,
respectively.

Regarding decidability issue, it is easy to prove that it is decidable whether a
given tiling system is deterministic while in [4] it is shown that it is undecidable
whether it is unambiguous. Here we prove that for those intermediate notions of
row-/ column-unambiguous tiling system such problem is still decidable.

We mention also that, in [7,20], it is given a different definition of determinism
for tiling systems based on the way a tiling system is used to recognize pictures.
Such definition is conceptually different and it does not reduce to conventional
determinism on strings when restricting to one-row pictures.

The last part of the paper is devoted to a proposal of a model of automaton
based on tiling systems. We start from the observation that a tiling system is not
an effective computation device: given a tiling system and a picture, if we want
to decide whether the picture belongs to the language recognized by the tiling
system, we have to try to cover the picture with the given tiles, in a way that they
match each others and the local symbols project to underlying symbols of the
picture. All the attempts can be done following any scanning strategy: we could
either start in the top-left corner and going row by row (from top to bottom)
or by columns or in a spiral-like way or in many other more or less natural or
strange ways of proceeding. Then in a sense, a set of tiles is the set of undirected
transitions for a sort of automaton that reads the given picture along a fixed
scanning strategy. We define what we call a tiling automaton as a generalization
of finite string automaton that reads pictures and processes them by means of a
transition function given as a tiling system. All the results mentioned are from
[3]. Then languages recognized by tiling automata are compared with languages
recognized by “classical” 2OTA and four-way automata.

2 Preliminaries

We recall some definitions about two-dimensional languages. The notations used
and more details can be mainly found in [11].

A two-dimensional string (or a picture) over a finite alphabet Σ is a two-
dimensional rectangular array of elements of Σ. The set of all pictures over Σ is
denoted by Σ∗∗ and a two-dimensional language over Σ is a subset of Σ∗∗.

Given a picture p ∈ Σ∗∗, let p(i,j) denote the symbol in p with coordinates
(i, j), where position (1, 1) corresponds to to top-left corner. Moreover if p has
m rows and n columns we denote �1(p) = m, the number of rows and �2(p) = n
the number of columns; the pair (m, n) is the size of p. The set of all pictures
over Σ of size (m, n) is denoted by Σm,n. It will be needed to identify the
symbols on the boundary of a given picture: for any picture p of size (m, n), we
consider the bordered picture p̂ of size (m + 2, n + 2) obtained by surrounding

78 D. Giammarresi

p with a special boundary symbol # �∈ Σ: positions of p̂ will be indexed in
{0, 1, · · · , m + 1} × {0, 1, · · · , n + 1}.

A tile is a picture of dimension (2, 2) and B2,2(p) is the set of all sub-blocks
of size (2, 2) of a picture p. Given an alphabet Γ , a two-dimensional language
L ⊆ Γ ∗∗ is local if there exists a finite set Θ of tiles over Γ ∪ {#} such that
L = {p ∈ Γ ∗∗|B2,2(p̂) ⊆ Θ} and we will write L = L(Θ).

A tiling system is a quadruple (Σ, Γ, Θ, π) where Σ and Γ are finite alphabets,
Θ is a finite set of tiles over Γ ∪ {#} and π : Γ → Σ is a projection. A two-
dimensional language L ⊆ Σ∗∗ is tiling recognizable if there exists a tiling system
(Σ, Γ, Θ, π) such that L = π(L(Θ)) (extending π in the usual way). We denote
by REC the family of all tiling recognizable picture languages.

We remark that tiling systems (Σ, Γ, Θ, π) for picture languages are in some
sense a generalization of automata for string languages. Indeed, in the one-
dimensional case, the quadruple (Σ, Γ, Θ, π) corresponds exactly to the graph of
the automaton: Γ represents the edges set, Θ describes the edges adjacency while
π gives the edges labels. A word of the local language defined by Θ corresponds
to an accepting path in the graph and its projection by π gives the actual
word recognized by the automaton (cf. [9]). Then, when rectangles degenerate
in strings the definition of recognizability coincides with the classical one for
strings.

The family REC is closed with respect to different types of operations (see
[11] for all the proofs). The column concatenation of p and q (denoted by p �q)
and the row concatenation of p and q (denoted by p �q) are partial operations,
defined only if �1(p) = �1(q) and if �2(p) = �2(q), respectively and are given by:

p �q = p q p �q =
p
q

.

REC family is closed under row and column concatenation and their closures,
under union, intersection and under rotation. All those closure properties confirm
the close analogy with the one-dimensional case. The big difference regards the
complement operation. In [11] it is shown that the family REC is not closed
under complement.

Let us give some examples to which we will refer later.

Example 1. Let Lfc=lc be the language of pictures over Σ = {a, b} whose the
first column is equal to the last one. Language Lfc=lc ∈ REC. Informally we can
define a local language where information about first column symbols of a picture
p is brought along horizontal direction, by means of subscripts, to match the last
column of p. Tiles are defined to have always same subscripts within a row while,
in the right-border tiles, subscripts and main symbols should match. Here are

some left border, right border and middle tiles, respectively:
zz

tt
,

zz #
tt # , and

zz sz

tt rt
with r, s, z, t ∈ Σ. Below it is an example of a picture p ∈ Lfc=lc together

with a corresponding local picture p′.

Tiling Recognizable Two-Dimensional Languages 79

p =

b b a b b
a a b a a
b a a a b
a b b b a

p′ =

bb bb ab bb bb

aa aa ba aa aa

bb ab ab ab bb

aa ba ba ba aa

.

Let Lfc=c′ be the language of pictures such that the first column is equal to
some i-th column, i �= 1. Note that Lfc=c′ = Lfc=lc

�Σ∗∗ and thus Lfc=c′ ∈
REC. Similarly we can show that the languages Lc′=lc = Σ∗∗ �Lfc=lc, and
Lc=c′ = Σ∗∗ �Lfc=lc

�Σ∗∗ are in REC. �	

An interesting model of 2D automaton to recognize picture languages is the two-
dimensional on-line tessellation acceptor (OTA) introduced in [13]. In a sense the
OTA is an infinite array of identical finite-state automata in a two dimensional
space. The computation goes by counter-diagonals starting from top-left towards
bottom-right corner of the picture. A run of a OTA on a picture consists in
associating a state to each position of the picture. Such state for some position
(i, j) is given by the transition function and depends on symbol in that position
and on the states already associated to positions (i, j−1), (i−1, j−1) and (i−1, j)
(note that an equivalent definition is possible with the state not depending on
the state in the top-left corner, (i − 1, j − 1)). A deterministic version of this
model is referred to as DOTA. The family of languages recognized by the two
versions of the model (L(OTA), L(DOTA)) are different. Despite this kind of
automaton is quite difficult to manage, this is actually the machine counterpart
of a tiling system: in [14], it is proved that REC = L(OTA).

Another model of automaton for two-dimensional languages is the 4-way au-
tomaton (4NFA or 4DFA for the deterministic version): it is defined as an ex-
tension of the two-way automaton that recognizes strings (cf. [6]) by allowing
it to move in four directions: Left, Right, Up, Down. It is proved that also for
4-way automata, the deterministic version of the model defines a class of lan-
guages smaller than the corresponding one defined by non-deterministic version
(see [11,6]).

3 Unambiguity and Determinism in Tiling Systems

In this section we consider the notions of unambiguity and determinism by tak-
ing their definitions in the string languages case and by generalizing them to
tiling systems recognizable languages. We always want that when pictures have
only one row, all the definitions coincide with ones in the strings case. Recall
that unambiguity prescribes only one accepting computation while determinism
admits only one possible next “move” at each step of the computation. In some
same the “uniqueness” is required globally for unambiguity while it should be
local for determinism. Recall that in the string case deterministic , unambiguous
and non-deterministic versions of the model for the computation correspond to
the same class of languages, namely recognizable languages. In two dimension
we have a more complex and rich situation as we shall see.

80 D. Giammarresi

Let us consider first the notion of unambiguity. The definition of unambiguous
recognizable two-dimensional language was first given in [10]. Informally, a tiling
system is unambiguous if every picture has a unique counter-image in its corre-
sponding local language. Remark that, by definition the notion of unambiguity
lies between notion of non-determinism and determinism.

Definition 1. A quadruple (Σ, Γ, Θ, π) is an unambiguous tiling system for a
two-dimensional language L ⊆ Σ∗∗ if and only if for any picture x ∈ L there
exists a unique local picture y ∈ L(Θ) such that x = π(y).

An alternative definition for unambiguous tiling system is that function π ex-
tended to Γ ∗∗ → Σ∗∗ is injective. We say that a two-dimensional language
L ⊆ Σ∗∗ is unambiguous if and only if it admits an unambiguous tiling sys-
tem and denote by UREC the family of all unambiguous recognizable two-
dimensional languages. Obviously UREC ⊆ REC.

Example 2. The language Lfc=lc (see Example 1) of pictures p whose first col-
umn is equal to the last one, is in UREC. Indeed, we can define a tiling system
as done before and this is unambiguous. This because there is only one possible
counter-image for the first column of a picture p and there is a unique way to
build, from this, the counter-image for the second column of p and so on up to
the last column of p.

Given the definition of unambiguous tiling system, several questions naturally
arise: the main one regards the problem whether all tiling recognizable languages
admit unambiguous tiling systems. In [4], it is given a necessary condition for
a language to be in UREC. Then, using such condition one can show that the
language of pictures over a two letters alphabet that have two columns equals is
not in UREC and therefore that family UREC is strictly contained in REC. In [4]
it is also proved that UREC is closed under rotation and intersection operations
while it is not closed under row and column concatenations and star operations.
Moreover it is showed that it is undecidable whether a given tiling system is
unambiguous.

When consider determinism we still have the property of a unique accepting
computation but we also require that at each step of such computation we have
a unique possible ”choice”. A recognition process is performed in linear time i.e.
it does not have any backtracking at each step of the computation.

We recall that, in the string case there are two notions of determinism: (con-
ventional) determinism and co-determinism. In fact, if the right-to-left automa-
ton is deterministic we say that conventional automaton is co-deterministic.
Translating ”deterministic property” on a tiling system for strings, this should
be given according to a fixed direction. Moreover recall that not all regular string
languages admit automata that are both deterministic and co-deterministic.

Going to the two dimensional case there are 4 possible starting positions
(the four corners) and therefore 4 possible main scanning directions (one from
each corner). For example consider the direction from top-left corner towards
the bottom-right one, denoted by tl2br-direction: any reading of a picture along
this direction has the property that we can read position (x, y) only if we have

Tiling Recognizable Two-Dimensional Languages 81

already read all the positions that are above and to the left of (x, y) that is all
the positions (i, j) with i ≤ x and j ≤ y. Similarly we can define all the others
corner-to-corner directions tl2br, tr2bl, bl2tr, br2tl.

Remark that, unlike the 1D case, once fixed a scanning direction there can be
several reading paths on the picture p that are ”compatible with” that direction.

We now define formally Deterministic Tiling systems.

Definition 2. A tiling system (Σ, Γ, Θ, π) is tl2br-deterministic if for any γ1,

γ2, γ3 ∈ Γ ∪ {#} and σ ∈ Σ there exists at most one tile
γ1 γ2

γ3 γ4
∈ Θ, with

π(γ4) = σ.

Similarly we define d-deterministic tiling systems for any direction d.

Example 3. Let Lfr=fc be the language of squares over a two-letters alphabet
Σ = {a, b} with the first row equal to the first column. Lfr=fc ∈ REC: indeed
we will exhibit a tiling system T = (Σ, Γ, Θ, π) recognizing L. The tiling system
T is such that, for any picture p, the information on each letter of the first row
is brought down till the diagonal and then left towards the first column. More
precisely, we use a local alphabet Γ = {xz

y with x, y ∈ {a, b}, z ∈ {0, 1, 2}}
and define π(xz

y) = x. The superscript symbol 0 occurs only in positions below
the diagonal, the symbol 1 occurs only on the diagonal and symbol 2 occurs
only above the diagonal, while the subscript symbols correspond to information
we are bringing from the first row to the first column (making a turn at the
diagonal). Here below it is given an example of a picture p ∈ Lfr=fc together
with the corresponding local picture p′ (i.e. π(p′) = p).

p =

a a b b a
a b b a a
b b a a b
b b a a a
a a a a b

p′ =

a1
a a2

a b2
b b2

b a2
a

a0
a b1

a b2
b a2

b a2
a

b0
b b0

b a1
b a2

b b2
a

b0
b b0

b a0
b a1

b a2
a

a0
a a0

a a0
a a0

a b1
a

It is easy to see that the tiling system T is tl2br-deterministic. Remark that

it is not br2tl-deterministic: tiles
a1

a a2
a

a0
a b1

a
,

a1
b a2

a

a0
a b1

a
∈ Θ with π(a1

a) = π(a1
b) = a.

It is easy to show [2] that it is decidable whether a given tiling system is
d-deterministic for some direction d. It suffices to verify that there are not pairs

of tiles
γ1 γ2

γ3 γ4
,

γ1 γ2

γ3 γ′
4

∈ Θ, with γ4 �= γ′
4 and π(γ4) = π(γ′

4).

A recognizable two-dimensional language L is deterministic, if it admits a d-
deterministic tiling system for some corner-to-corner direction d. We denote by
DREC, the class of Deterministic Recognizable Two-dimensional Languages.

Remark that, by definition, DREC is closed under rotation. Using this, it can
be proved that DREC is closed under complement. The proof follows from the
fact that DREC is the closure under rotation of L(DOTA) [2] and the closure of

82 D. Giammarresi

L(DOTA) under complement [13]. Again from the definition, it is easy to show
that deterministic recognizable languages are unambiguous (i.e. DREC⊆UREC).
In [2] we prove that there are unambiguous recognizable languages that are
not deterministic. The proof is given by showing that a certain language is
unambiguous but not deterministic and it is quite sophisticated.

Taking as starting point this result of strict inclusion, it is very interesting
to notice that it is possible to define other families, we denote Col-UREC and
Row-UREC, between DREC and UREC that correspond to intermediate no-
tions. Recall that DREC is the class of languages that can be accepted with
backtracking 0 in their computations; while UREC languages may require back-
tracking linear in the size of the pictures during computation. Col-UREC and
Row-UREC are defined in such a way to have backtracking at most linear in one
dimension of the picture. They correspond to an intermediate notion between
determinism and unambiguity, and hence they lie between DREC and UREC.
Note that the situation is extremely more complex than in 1D where all the
corresponding classes collapse.

We now define column- and row-unambiguous languages. For this, we use a
different point of view for two-dimensional scanning directions: we somehow con-
sider one dimension at each time and therefore move only along that direction.
More precisely, we consider four side-to-side scanning directions namely left-to-
right and vice versa, top-to-bottom and vice versa. In particular any reading
of a picture p along the side-to-side direction for left-to-right, denoted by l2r-
direction, has the property that we can read position (x, y) only if we have
already read all the positions in the columns to the left, that is all the positions
(i, j) with j < y. In other words the scanning of p proceeds column by column
(despite we do not pay attention to the order of reading inside a given column).
Similarly we can define all the others side-to-side directions l2r, r2l, t2b, and b2t.

Informally, we say that a tiling system is l2r-unambiguous if, when used to
recognize a picture by reading it along a l2r direction, there is only one possible
next local column.

Definition 3. A tiling system (Σ, Γ, Θ, π) is l2r-unambiguous if for any col-
umn col′ ∈ Γ m,1 ∪ {#}m,1, and picture p ∈ Σm,1, there exists at most one
local column col′′ ∈ Γ m,1, such that π(col′′) = p and B2,2(p′) ⊆ Θ where
p′ = {#}1,2 �(col′ �col′′) �{#}1,2.

Similar properties define d-unambiguous tiling systems, for any side-to-side di-
rection d. We say that a language is column-unambiguous if it is recognized by a
d-unambiguous tiling system for some d ∈ {l2r, r2l} and it is row-unambiguous
if it is recognized by a d-unambiguous tiling system for some d ∈ {t2b, b2t}. Fi-
nally, we denote by Col-UREC the class of column-unambiguous languages and
by Row-UREC the class of row-unambiguous languages.

Remark that, a column-unambiguous tiling system is such that, during the
computation of a picture of size (m, n), the backtracking at each step is at
most m. This is because the next local column is uniquely determined without

Tiling Recognizable Two-Dimensional Languages 83

ambiguity after backtracking of m steps at most. Same remarks hold for row-
unambiguity. Moreover it is interesting to observe that we could similarly de-
fine diagonal unambiguity, requiring that the next diagonal of local symbols is
uniquely determined from the previous one (for example, the counter-diagonals
like OTA’s transitions waves). In this case, such a diagonal unambiguity would
coincide with determinism, since the local symbol in a position on the diagonal
does not depend on the other local symbols on the diagonal.

In [2] there are given some necessary conditions for picture languages in Col-
UREC and Row-UREC and then it is proved the following theorem.

Theorem 1. DREC⊂ (Col-UREC∩Row-UREC)⊂ (Col-UREC∪Row-UREC)
⊂ UREC ⊂ REC, with all strict inclusions.

We conclude with a decidability issue. We already mentioned that it is unde-
cidable whether a given tiling system is unambiguous while we argued that it is
decidable whether a given tiling system is corner-to-corner deterministic. It can
be shown (see [2]) that it is still decidable whether a tiling system is column-/
row-unambiguous.

4 Tiling Automata

In this section we briefly introduce a model of Tiling Automaton that is an
effective computational device whose transition function is given by a tiling
system. For all details see [3].

The starting observation is that in one-dimensional case (see proof in [9]) the
tiling system represents the state-graph of a finite automaton with non-oriented
edges. To get an automaton from a tiling system we assume the conventional way
of reading the string (from left to right) and therefore we by choose a direction
for such edges. Remark that we could also assume to read the string from right
to left and get another automaton that accepts the same language but processes
strings from right to left. Hence a tiling system is part of an automaton, i.e. a
computation device, providing a scanning strategy that ”gives the instructions”
on how to use it to do the computation. When extend all these reasonings to
two dimensions we have to fix a scanning strategy to read the input picture. We
have much more possibilities: we have four main scanning directions from the
one corner to the opposite one but also scanning strategies can not necessary
follow a fixed direction.

To fix the ideas, choose the scanning strategy that, for any picture, goes row
by row, from left to right and from top to bottom. We consider a next-step
function f(i, j, m, n) equal to (i, j + 1) if j ≤ n − 1 and equal to (i + 1, 1) if
j = n and i < m. First position of the scanning will be the top-left corner:
applying iteratively such next-step function to current position, we obtain a
complete scanning sequence for the input picture. Note also that, when we have
reached position (i, j), we have already visited its top-left contiguous positions
(i.e. positions (i− 1, j − 1), (i− 1, j), (i, j − 1)) and so we have already “chosen”
the local symbols for those positions. Now, at this step of the computation, it

84 D. Giammarresi

is possible to choose a suitable tile for the four positions (i, j), (i − 1, j − 1),
(i − 1, j) and (i, j − 1) and compute the local symbol for (i, j). Remark that
for the computation, it is necessary to remember some of the local symbols
associated to the positions of p already scanned. In particular when we have
reached position (i, j), we need to remember the local symbols in the positions
of the (i − 1)-th row, from the (j − 1)-th column to the last one, and the local
symbols in the positions of the i-th row, from the first column to the (j − 1)-th
one. We do this with a suitable data structure.

Then a tiling automaton will be defined by a tiling system plus a scanning
strategy (that uses a next-step function) plus a data structure (equipped with
some operations).

Other scanning strategies will define different tiling automata but the class of
recognized languages will be the same, namely REC. The main difference will
arise for definition of deterministic automata: depending on the chosen scanning
strategy deterministic tiling automata define different classes of languages.

Here we do not give precise definitions. Informally a scanning strategy will
be some computable next-position function with some ”contiguity” and ”filling”
properties plus a starting position for the scanning. The scanning strategy will
be ”compatible” with some corner-to-corner direction.

According to a scanning strategy, a tiling system becomes a device able to
effectively process a picture and decide whether it has to be accepted or not,
whenever we can (easily) keep track of all information needed for the next steps
of the computation. In other words for any scanning strategy, we need a proper
data structure that supports operations of retrieval of the three states defined in
the three contiguous positions and the update of structure itself. (In the simple
example at the beginning of the section such data structure was a list).

Definition 4. A Tiling Automaton (TA for short) of type tl2br is a quadruple
A = (T ,S, D0, δ) where T = (Σ, Γ, Θ, π) is a tiling system, S is a tl2br-directed
scanning strategy, D0 is the initial content of a data structure that supports
operations state1(D), state2(D), state3(D), update(D,γ), for γ ∈ Γ ∪ {#},
and δ : (Γ ∪ {#})3 × (Σ ∪ {#}) → 2Γ∪{#} is a partial function such that

γ4 ∈ δ(γ1, γ2, γ3, σ) if the tile
γ1 γ2

γ3 γ4
∈ Θ and π(γ4) = σ if σ ∈ Σ, γ4 = #,

otherwise.

Similarly, we define a tiling automaton of type d for any corner-to-corner direc-
tion d.

Definition 5. A tiling automaton A = (T ,Sf , D0, δ) is deterministic if for any
γ1, γ2, γ3 ∈ Γ ∪ {#} and σ ∈ Σ ∪ {#} there exists at most one symbol γ4 such
that γ4 ∈ δ(γ1, γ2, γ3, σ).

In can be given also a definition of unambiguous tiling automaton (UTA) by
requiring only one accepting computation for each picture in the language. The
computation of a tiling automaton on a picture and the acceptance criteria are
defined similarly to one-dimensional case via instantaneous configurations. All

Tiling Recognizable Two-Dimensional Languages 85

the details are of course much more involved because of dealing with the data
structures and of the scanning strategy.

Let L(TA) denote the class of languages accepted by tiling automata. It can be
shows that the recognition power of a tiling automaton is independent from the
scanning strategy we choose: L(TA) coincides with REC family. Furthermore,
we have that L(DTA)=DREC and L(UTA)=UREC as defined in the previous
section. In fact deterministic tiling automata are the computational model cap-
turing the notion of determinism as introduced for DREC family. The same
remark holds for UREC. Hence L(DTA), L(UTA) inherit several properties of
the classes DREC and UREC (see [2,4]).

Tiling automata can be viewed as a more general model than OTA, since the
computation done by a OTA can be simulated by a tiling automaton of a certain
type. Nevertheless OTA and tiling automata have the same recognition power,
that is they recognize the same class of languages (namely REC). In particular it
can be shown that any OTA can be simulated by a tiling automaton of type tl2br.
On the contrary when restricted to their deterministic counterparts, DOTA are
less powerful than deterministic tiling automata.

We finish by considering 4-way automata. Observe that the tiling automaton
is a model conceptually different from 4-way automaton: while the next move-
ment of a 4FA is determined from the pair (state,symbol), in a tiling automaton
the direction of the computation is fixed in advance. Furthermore 4-way au-
tomaton can visit the same position many times, while this is forbidden to tiling
automata. And in fact L(4NFA) is strictly contained in L(TA)=REC. When re-
stricting to determinism, the two models diverge: it can be shown that L(DTA)
is incomparable with L(4DFA), still remaining inside L(UTA).

Acknowledgments

I am grateful to my friends and co-authors Marcella Anselmo, Maria Madonia
and Antonio Restivo for all the results discussed in this paper.

References

1. Anselmo, M., Giammarresi, D., Madonia, M.: New Operators and Regular Expres-
sions for two-dimensional languages over one-letter alphabet. Theoretical Com-
puter Science 340(2), 408–431 (2005)

2. Anselmo, M., Giammarresi, D., Madonia, M.: From determinism to non-
determinism in recognizable two-dimensional languages. In: Harju, T., Karhumäki,
J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, Springer, Heidelberg (2007)

3. Anselmo, M., Giammarresi, D., Madonia, M.: Tiling Automaton: a Computational
Model for Recognizable Two-dimensional Languages. In: Holub, J., Žd’árek, J.
(eds.) CIAA 2007. LNCS, vol. 4783, Springer, Heidelberg (2007)

4. Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambiguous Recog-
nizable Two-dimensional Languages. RAIRO: Theoretical Informatics and Appli-
cations 40(2), 227–294 (2006)

86 D. Giammarresi

5. Anselmo, M., Madonia, M.: Deterministic Two-dimensional Languages over One-
letter Alphabet. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4783,
Springer, Heidelberg (2007)

6. Blum, M., Hewitt, C.: Automata on a two-dimensional tape. IEEE Symposium on
Switching and Automata Theory, pp. 155–160 (1967)

7. Borchert, B., Reinhardt, K.: Deterministically and Sudoku-Deterministically
Recognizable Picture Languages: http://www-fs.informatik.uni-tuebingen.
de/borchert/papers/borchert/papers/Borchert-Reinhardt 2006 Sudoku.pdf

8. Bozapalidis, S., Grammatikopoulou, A.: Recognizable picture series, Journal of
Automata, Languages and Combinatorics, special vol. Weighted Automata (2004)

9. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, London
(1974)

10. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. Journal Pattern
Recognition and Artificial Intelligence 6(2&3), 241–256 (1992)

11. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., et al.
(eds.) Handbook of Formal Languages, vol. III, pp. 215–268. Springer, Heidelberg
(1997)

12. Giammarresi, D., Restivo, A., Seibert, S., Thomas, W.: Monadic second order
logic over pictures and recognizability by tiling systems. Information and Compu-
tation 125, 32–45 (1996)

13. Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessellation
acceptors. Information Sciences 13, 95–121 (1977)

14. Inoue, K., Takanami, I.: A characterization of recognizable picture languages. In:
Nakamura, A., Saoudi, A., Inoue, K., Wang, P.S.P., Nivat, M. (eds.) ICPIA 1992.
LNCS, vol. 654, Springer, Heidelberg (1992)

15. Lindgren, K., Moore, C., Nordahl, M.: Complexity of two-dimensional patterns.
Journal of Statistical Physics 91(5-6), 909–951 (1998)

16. Matz, O.: Regular expressions and Context-free Grammars for picture languages.
In: Reischuk, R., Morvan, M. (eds.) STACS 97. LNCS, vol. 1200, pp. 283–294.
Springer, Heidelberg (1997)

17. Matz, O.: On piecewise testable, starfree, and recognizable picture languages. In:
Nivat, M. (ed.) Foundations of Software Science and Computation Structures,
vol. 1378, Springer, Berlin (1998)

18. Matz, O., Thomas, W.: The Monadic Quantifier Alternation Hierarchy over Graphs
is Infinite. In: IEEE 1997. IEEE Symposium on Logic in Computer Science, LICS,
pp. 236–244. IEEE Computer Society Press, Los Alamitos (1997)

19. Potthoff, A., Seibert, S., Thomas, W.: Nondeterminism versus determinism of finite
automata over directed acyclic graphs. Bull. Belgian Math. Soc. 1, 285–298 (1994)

20. Reinhardt, K.: On some recognizable picture-languages. In: Brim, L., Gruska, J.,
Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 760–770. Springer, Heidelberg
(1998)

http://www-fs.informatik.uni-tuebingen.de/borchert/papers/Borchert-Reinhardt_2006_Sudoku.pdf
http://www-fs.informatik.uni-tuebingen.de/borchert/papers/Borchert-Reinhardt_2006_Sudoku.pdf

Algebraic Methods in Quantum Informatics

Jozef Gruska

Faculty of informatics, Masaryk university
Botanická 68a, 60200 Brno, Czech Republik�

Abstract. The paper presents and discuses several important problems
and challenges of quantum informatics at which algebraic methods have
been, or expect to be, very useful, or even of the key importance.

Some of these problems came up quite naturally, at a very straight-
forward quantumization of the classical informatics concepts, models
and problems. However, the most attractive/important ones come up
when one starts to dig deeper into the quantum world, into its phe-
nomena, processes, laws and limitations. Among them are problems that
belong to grand challenges not only of informatics (and physics), but
of all current science. To get involved in exploration of such challenges
is therefore much desirable for informatics community with algebraic
expertise.

1 Quantum Informatics

Quantum informatics is an area of science that has emerged through a mar-
riage of arguable two most important areas of science of 20th century, quantum
physics and informatics. It has three main goals: (a) to develop a scientific ba-
sis to study laws and limitations of (quantum) information processing world;
(b) to develop a scientific bases for the emerging quantum information process-
ing and communication technology; (c) to develop new, information process-
ing based, scientific tools to understand (quantum) physical world. To achieve
its goals, quantum informatics uses all available methods of informatics (and
mathematics) and physics, and algebraic methods play by that a prominent
role.

All that is closely related to our view that the main scientific goal of physics
is to study concepts, phenomena, processes, laws and limitations of the physical
world and that the main scientific goal of informatics is to study concepts, phe-
nomena, processes, laws and limitation of the information world (see also Calude
and Gruska, 2007). Investigation of the relations between these two worlds, be-
tween their fundamental concepts and also of the question how much are these
two worlds actually only two sides of a single world, belong to the most funda-
mental problems of science.

� Support of the grants GACR 201/07/0603 and MSM00211622419 as well as VEGA
1/3105/06 is to be acknowledged.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 87–111, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

88 J. Gruska

2 Basics of Quantum Information Processing

In order to make this paper quite self-contained, let us first introduce, very
briefly, basic concepts of quantum information processing. For details see Gruska
(1999, 2006), Chuang and Nielsen (2000).

The starting point is an understanding that the mathematical concept of
Hilbert space well corresponds to the physical concept of quantum system.

Hilbert space Hn is an n-dimensional complex vector space with

the (scalar) inner product 〈ψ|φ〉 =
n∑

i=1

φiψ
∗
i of vectors |φ〉 =

∣∣∣∣∣∣∣∣∣

φ1
φ2
...

φn

∣∣∣∣∣∣∣∣∣
, |ψ〉 =

∣∣∣∣∣∣∣∣∣

ψ1
ψ2
...

ψn

∣∣∣∣∣∣∣∣∣
,

where the norm of a vector ||φ|| =
√

|〈φ|φ〉| and metrics dist(φ, ψ) = ||φ − ψ||
can be defined. This allows to introduce on Hn such concepts as continuity.

Elements (vectors) of a Hilbert space Hn are usually called n-dimensional
pure states, or, more physically, n-level systems.

Two quantum states |φ〉 and |ψ〉 are called orthogonal if their inner product is
zero, that is if 〈φ|ψ〉 = 0. The concept of states orthogonality is very important
because two pure quantum states are physically perfectly distinguishable if and
only if they are orthogonal.

By an orthogonal decomposition H1 ⊕ H2 ⊕ . . . ⊕ Hk of a Hilbert space H we
understand such a set of mutually orthogonal subspaces H1, . . . , Hk of H that
each state of H can be in a unique way decomposed as a superposition of states
from subspaces H1, . . . , Hk. In every Hilbert space there are so-called orthogonal
bases - they are bases all states of which are mutually orthogonal and of the
norm one. In the following we consider only orthonormal bases.

Dirac introduced a very handy notation, so-called bra-ket notation, to deal
with probability amplitudes, quantum states and linear functionals f : H → C
of any Hilbert space H.

If ψ, φ ∈ H , then

〈ψ|φ〉 — the inner (scalar or Hermitian) product of ψ and φ — is a probability
amplitude of a transfer from the state φ to ψ;

|φ〉 — the ket-vector — is an equivalent to φ
〈ψ| — the bra-vector — is a linear functional on H such that 〈ψ|(|φ〉) = 〈ψ|φ〉;
|ψ〉〈φ| — the outer product of |ψ〉 and |φ〉 — is a (density) matrix.

Example. For states φ = (φ1, . . . , φn) and ψ = (ψ1, . . . , ψn) we have

|φ〉=

⎛
⎝

φ1
. . .
φn

⎞
⎠ , 〈φ|=(φ∗

1 , . . . , φ
∗
n); 〈φ|ψ〉=

n∑
i=1

φ∗
i ψi; |φ〉〈ψ| =

⎛
⎜⎝

φ1ψ
∗
1 . . . φ1ψ

∗
n

...
. . .

...
φnψ∗

1 . . . φnψ∗
n

⎞
⎟⎠ .

Algebraic Methods in Quantum Informatics 89

It is natural to see each evolution step in a quantum system as a transition
from one state to another. Such a transition has to satisfy three principles:

P1 To each transfer from a quantum state φ to a state ψ a complex number
〈ψ|φ〉 is associated, so-called probability amplitude of the transfer, such that
|〈ψ|φ〉|2 is the probability that the transfer takes place.

P2 If a transfer from a quantum state φ to a quantum state ψ can be de-
composed into two subsequent transfers, ψ ← φ′ ← φ, then the resulting
amplitude of the transfer is the product of amplitudes of the sub-transfers
〈ψ|φ〉 = 〈ψ|φ′〉〈φ′|φ〉.

P3 If the transfer from a state φ to a state ψ has two independent alternatives,
with amplitudes α and β,

ψ φ

α

β

then the overall amplitude of the transfer is the sum α + β of amplitudes of
two sub-transfers (and therefore α + β = 0 if α = −β).

In general, an evolution of a quantum system, that is in the state ψ(t) in time
t, is described by so-called Schrödinger linear equation

i�
∂ψ(t)

∂t
= H(t)ψ(t),

where H(t) is a quantum analogue of a Hamiltonian (in time t), of the classical
system, and � is the Planck constant. From that it follows that the evolution
(computation) of a quantum system is performed by a unitary operator A =
eiH , for the case the Hamiltonian H is constant in time, and a step of such an
evolution, when the evolution is considered in discrete time, can then be seen as
a multiplication of a unitary matrix1 A with a vector |ψ〉, i.e. as A|ψ〉.

In case an orthonormal basis {βi}n
i=1 is chosen in Hn, any state |φ〉 ∈ Hn can

be uniquely expressed in the form

|φ〉 =
n∑

i=1

ai|βi〉,
n∑

i=1

|ai|2 = 1,

1 A matrix A is called unitary if A · A† = A† · A = I , where A† is conjugate transpose
of A.

90 J. Gruska

where ai = 〈βi|φ〉, and |ai|2 are probabilities that if the state |φ〉 is measured with
respect to the basis {βi}n

i=1, then the state |φ〉 collapses (is projected) into the state
|βi〉. The classical “outcome” of a measurement of the state |φ〉, with respect to the
basis {βi}n

i=1, is then the index i of that state |βi〉 into which the state |φ〉 collapses.
A more general way to define quantum projective measurement is throuh

observables - Hermitian matrices. Each such matrix A can be decomposed in
a unique way in the form A =

∑k
i=1 λiPi, where λi are different eigenvalues

of A and each Pi is the projection operator into the subspace of eigenvectors
coresponding to the eigenvalue λi. The result of such a measurement of a state
|ψ〉 is then a (random) projection to one of such subspaces.

The most general form of quantum measurement is so-called Positve Operator
Valued Measurement (POVM). Such measurement on a Hilbert space H actually
only formally captures the impact of a projective measurement performed on a
larger Hilbert space.

A qubit is a quantum system whose state

|φ〉 = α|0〉 + β|1〉, where α, β ∈ C are such that |α|2 + |β|2 = 1,

lies in the two dimensional Hilbert space in which {|0〉, |1〉} is a (standard) basis.

Example. Representation of qubits by
(a) electron in a Hydrogen atom (b) a spin- 1

2 particle

n=1

Basis states

|0> |1>H H

Hamplitudes

(a) (b)

|0> = | > |1> = |

General state

=

amplitudes

α

β

α|0> + β|1>

|α| + |β| = 1

α + β

| > = α| > + β| >

|α| + |β| = 1

2

2 2

>

General state

2

n=1

n=2n=2

Basis states

Fig. 1. Qubit representations by energy levels of an electron in a hydrogen atom and

by a spin- 1
2 particle. The condition |α|2+|β|2 = 1 is a legal one if |α|2 and |β|2 are to be

the probabilities of being in one of two basis states (of electrons or spin- 1
2 ’s particles).

Another important concept, very specific indeed in the quantum case, is that
of a composed quantum system. In case a quantum system S1 (S2) is represented
by a Hilbert space Hn (Hm), with an orthogonal basis {αi}n

i=1 ({βj}m
j=1), then

the composed quantum system of S1 and S2 is represented by the Hilbert space
Hnm = Hn ⊗ Hm, the tensor product of Hilbert spaces Hn and Hm - and one
of its basis consists of all tensor products

{αi ⊗ βj}n,m
i,j=1

of vectors of the bases of the two Hilbert (sub)spaces Hn and Hm.

Algebraic Methods in Quantum Informatics 91

Example. A quantum n-qubit register can be seen as being composed of n qubit
systems and as one of its basis we have all n-fold tensor products of the basis
vectors/states {|0〉, |1〉} of H2, that is of the vectors/states

|b1〉 ⊗ |b2〉 ⊗ . . . ⊗ |bn〉

that are usually denoted as
|b1b2 . . . bn〉.

All such vectors form a (computational, or standard) basis of the Hilbert space
H2n of n qubits.

In the classical world, each state of a composed system is composed from the
states of subsystems. This is not the case in the quantum world.

States of a bipartite quantum system S1 ⊗ S2, represented by tensor product
of underlying Hilbert spaces Hn and Hm, that cannot be decomposed as tensor
products of the states of the underlying subsystems are called entangled states.

Example. So-called the EPR-state

1√
2
(|00〉 + |11〉

is an important example of an entangled state of a two-qubit register.
Another important concept is that of a mixed state. Any probability distri-

bution {(pi, |φi〉}k
i=1 on pure states is called a mixed state. To each such a mixed

state a ρ so-called density operator is assigned that is defined as

ρ =
k∑

i=1

pi|φi〉〈φi|.

One interpretation of a mixed state {(pi, |φi〉}k
i=1 is that a source produces

the state |φi〉 with probability pi. Any matrix representing a density operator,
in a basis, is called density matrix. Density matrices are quantum generalization
of classical probability distributions. Another important fact is that two mixed
states with the same density matrix are physically undistinguishable.

A mixed state (density matrix) ρ of H is called entangled if ρ cannot be written
in the form

ρ =
k∑

i=1

piρA,i ⊗ ρB,i

where ρA,i (ρB,i) are density matrices in HA (in HB) and
∑k

i=1 pi = 1, pi > 0.
The existence of entangled states has important implications. Indeed, if two

particles, no matter how much space-separated they are, are in the entangled
EPR-state

1√
2
(|00〉 + |11〉),

92 J. Gruska

then a measurement of any one of them, in the standard basis, makes the EPR-
state to collapse, with the same probability, to one of the states

|00〉 or |11〉,

that is to a mixed state, and therefore the measurement (even instantaneous) of
the other particle produces the same classical outcome.

Measurements of entangled states therefore produce non-local correlations.
However, the non-local correlations the entangled states exhibit do not allow
superluminal transmission of information and therefore do not contradict the
relativity theory. Since measurement of entangled states creates non-local corre-
lations and therefore entangled states used to be seen as strange features of the
quantum mechanics as of the theory of quantum world. Nowadays, entangled
states are seen as important resource of quantum information processing, what
will be discussed in more details later.

3 Why Quantum Mechanics Is as It Is?

In order to discuss powerful, though often subtle, role of algebra in Quantum
Information Processing and Communication (QIPC), let us start with a very
foundational question/problem.

It is understood/believed, at least by some, that QIPC in general, and quan-
tum informatics in particular, has a potential to contribute significantly to the
old debates concerning various interpretations of quantum mechanics theory and
concerning their mutual relations. Perhaps the main effort of QIPC people in
this area has concentrated recently on such natural and foundational question as
Why quantum mechanics (is as it is), with the goal to find natural (information-
theoretic, or even information-processing casted) axioms of quantum mechanics
- axioms that would have clear physical meaning and would deal with possibility
or impossibility of various information processing phenomena and processes.

Quantum computational complexity has already been used to show why various
modifications (or fantasy versions) of quantum mechanics are much too powerful
and this way we can gain additional insight why quantum mechanics is as it is.

Another interesting idea came from Brassard and Fuchs. They asked whether
we can built quantum physics from the following two axioms: (a) uncondition-
ally secure quantum key distribution is possible; (b) unconditionally secure bit
commitment is not possible; and, perhaps, from few other very simple axioms.

Clifton, Bub and Halverson (2002) took their challenge and showed that one
can derive quantum mechanics from the following three axioms: no superluminal
communication, no broadcasting and no unconditionally secure bit commitment,
though they seem to need (as pointed out by Smolin (2004)), an assumption that
quantum mechanics has to be formulated in the C∗-algebra terms. Actually, they
showed that “the above constrains force any theory formulated in C∗-algebraic
terms to incorporate a non-commuting algebra of observables for individual sys-
tems, kinematic independence for the algebras of space-like separated systems and
the possibility of entanglement between space-like separated systems”.

Algebraic Methods in Quantum Informatics 93

It is worth to observe that C∗-algebras play an important role in quantum
mechanics and quantum information processing in several other ways.

4 Quantum (Finite) Automata

For all basic models of classical automata: finite automata, push-down automata,
Turing machines, RAM and cellular automata, we have nowadays their quantum
versions. In the following we only briefly present basic models and results for quan-
tum finite automata. For details, and references see Gruska (1999, 2000, 2006a).

Importance of various quantum versions of the classical finite automata follows
also from the following basic observation.

Quantum computations operate in the quantum world. However, for results
of quantum computations to be useful, they have to get an input (an output)
from (into) the classical world. Therefore, quantum computation has to operate
under the classical control. How can the outcomes of quantum processes get into
the classical world? Only by measurements.

Another motivation for the study of quantum finite automata goes as follows:
It is still questionable whether we can design a powerful universal quantum
computer. Exploration of the power of quantum finite automata is therefore a
very natural goal. Moreover, exploration of the classical finite automata brought
beautiful, powerful and very useful theory, with surprisingly many important
applications practically in all areas of informatics, and it is therefore natural to
expect that it could be so also in the quantum case.

Let us now demonstrate how we come to a natural quantum model of (finite)
automata.

Input will be a binary string #w1 . . . wn$, |w| = n, wi ∈ Σ - an input alphabet.
The set of states will be Q = Qa ∪ Qr ∪ Qn, with mutually disjoint subsets of
accepting, rejecting and not-terminating states. A configuration is a pair (q, i)
- a state q ∈ Q and a position, 0 ≤ i ≤ n + 1, on the input tape; a set of
configurations (for an input w) is C(Q, w) = {(q, i) | q ∈ Q, 0 ≤ i ≤ |w|+1}. The
underlying Hilbert space is H|C(Q,w)|. A transition mapping is defined by

δ(q, i) =
∑

q′∈Q,1≤j≤n

αq′,j |(q′, j)〉,

with an additional requirement that the evolution induced by δ has to be unitary.
The measurement mapping is defined by a projection into one of the mutually

disjoint and orthogonal subspaces:

Ea = l({(q, i) | q ∈ Qa}), Er = l({(q, i) | q ∈ Qr}), El = l({(q, i) | q ∈ Qn}).

The following two acceptance modes are of special importance for quantum
finite automata:

– MM-mode (many measurements mode) - a measurement is peformed after
each step of computation;

– MO-mode (measurement once mode) - only one measurement is performed
- at the very end of computation.

94 J. Gruska

Definitions when a word, or a language, is accepted by a quantum automaton
are done in a similar way as in the case of probabilistic automata. We can
therefore talk about unbounded error acceptance and, especially, about bounded
error acceptance, and also about an acceptance with a cut-point.

Of the main importance seems to be the following basic model of so called
one-way quantum finite automata (1QFA).

A one-way (real-time) quantum finite automaton (1QFA) A is given by: Σ —
the input alphabet; Q — the set of states; q0 – the initial state; Qa ⊆ Q, Qr ⊆ Q
— sets of accepting and rejecting states and the transition mapping

δ : Q × Γ × Q → C[0,1],

where Γ = Σ ∪ {#, $} and symbols #, $ are endmarker.
The evolution (computation) of A is performed on the Hilbert space H|Q|,

with the basis states {|q〉 | q ∈ Q}, using unitary operators Vσ, σ ∈ Γ , defined,
for basis states {|q〉 | q ∈ Q}, by

Vσ|q〉 =
∑
q′∈Q

δ(q, σ, q′)|q′〉.

For measurement the computational observable is used that corresponds to the
following orthogonal decomposition of l2(Q):

l2(Q) = Ea ⊕ Er ⊕ En,

where
Ea = span{|q〉 | q ∈ Qa};

Er = span{|q〉 | q ∈ Qr};

En is the orthogonal complement of Ea ⊕ Er.

1QFA with measurement once (many) mode of acceptance accept exactly the
class of group languages (a special proper subclass of regular languages).2

An open problem is to characterize, in a nice way, the family of languages
accepted by 1QFA with MM-mode of acceptance. It is known that this class is a
proper subclass of the class of regular languages and it is closed under comple-
ment, inverse homomorphism and quotient, but it is not closed under homomor-
phism and binary Boolean operations. Moreover, no really nice characterisation
of this class is known.

Of interest are also main results concerning succinctness of 1QFA with MM-
mode of acceptance. In some cases, (sequential) quantum one-way finite au-
tomata can be, likely due to the parallelism in their evolution, exponentially
more succinct than classical deterministic finite automata (DFA). However, in

2 Group languages are defined as languages accepted by group automata; as languages
syntactical monoids of which are groups; or as languages that are accepted by per-
mutation automata (in which each transition function δ(., a) is a permutation).

Algebraic Methods in Quantum Informatics 95

some cases, quantum one-way finite automata can be, likely due to their require-
ment on the unitarity of their evolution, exponentially larger, with respect to
the number of states, as the corresponding DFA.

A very special model of quantum finite automata is that of so-called 1.5QFA.
They are QFA heads of which can duplicate and can “move only in one (left-
to-right) direction”, but “ a head does not have to move at each step, at some
steps it can stay idle”.

1.5QFA can accept non-regular languages, with respect to the unbounded
error acceptance. Their power follows also from the result, by Amano and Iwama,
that the emptiness problem is undecidable for 1.5QFA. An interesting old open
problem is whether every regular language is accepted by a 1.5QFA.

Another interesting model of quantum automata is that of two-way quantum
automata (2QFA) - a natural quantum version of the classical two-way finite
automata.

A 2QFA A is specified by a finite (input) alphabet Σ, a finite set of states Q,
an initial state q0, sets Qa ⊂ Q and Qr ⊂ Q of accepting and rejecting states,
respectively, with Qa ∩ Qr = ∅, and the transition function

δ : Q × Γ × Q × {←, ↓, →} −→ C[0,1],

where Γ = Σ ∪ {#, $} is the tape alphabet of A and # and $ are endmarkers,
not in Σ, which satisfies the following conditions (of well-formedness) for any
q1, q2 ∈ Q, σ, σ1, σ2 ∈ Γ , d ∈ {←, ↓, →} (to ensure unitarity of evolution):

1. Local probability and orthogonality condition.
∑

q′,d δ∗(q1, σ, q′, d)δ(q2, σ, q′, d) =
{

1, if q1 = q2;
0, otherwise.

2. Separability condition I.∑
q′ δ∗(q1, σ1, q

′, →)δ(q2, σ2, q
′, ↓) +

∑
q′ δ∗(q1, σ1, q

′, ↓)δ(q2, σ2, q
′, ←) = 0.

3. Separability condition II.∑
q′ δ∗(q1, σ1, q

′, →)δ(q2, σ2, q
′, ←) = 0.

Of importance is a special class of 2QFA, so-called unidirectional, or simple,
2QFA, in which for each pair of states, q and q′, a probability amplitude is
assigned that the automaton moves from the state q to the state q′. Moreover,
to each state q a head movement D(q) — to right, to left or no movement —
is defined with the interpretation that if an automaton comes to a state q, then
the head always moves in the direction D(q).

It is quite straightforward to show that the class of languages accepted by
simple 2QFA contains all regular languages and also some non-regular (even
non context free) languages as {0i1i | i ≥ 0}.

One problem with 2QFA is that this model actually is not that of finite memory -
to simulate such an automaton one needs an auxiliary memory proportional to the
logarithmof the length of the (classical) input. This disadvantagedoes not have the
classical/quantum model of two-way quantum automata discussed next.

The intuitive idea of having quantum action performed as a response to the
classical input is well captured by a surprisingly simple and powerful model of

96 J. Gruska

two-way quantum finite automata with classical and quantum states (2QCFA)
- due to Ambainis and Watrous.

A 2QCFA has a classical initial state q0 and also a quantum initial state |φ0〉
in a quantum register. The evolution of a 2QCFA is specified by a mapping Θ
that assigns to each classical state q and a tape symbol σ an action Θ(q, σ). One
possibility is that

Θ(q, σ) = (q′, d, U),

where q′ is a new state, d is the next movement of the head (to left, no movement
or to right) on the classical tape, and U is a unitary operator to be performed
on the current state of the quantum register.

The second possibility is that

Θ(q, σ) = (M, m1, q1, d1, m2, q2, d2, . . . , mk, qk, dk),

where M is a projection measurement, m1, . . . , mk are its possible classical out-
comes, and for each measurement outcome mi a new state qi and a new move-
ment di of the head is determined. In such a case, therefore, the state transmis-
sion and the head movement are probabilistic.

Ambainis and Watrous have shown that 2QCFA with only a single qubit
of quantum memory are already very powerful. Such 2QCFA can accept, with
bounded error, the language of palindromes over the alphabet {0, 1}, which
cannot be accepted by probabilistic 2FA at all, and also the language {0i1i | i ≥
0}, in polynomial time — this language can be accepted by probabilistic 2FA,
but only in exponential time.

For each model of quantum automata of interest is the task to find simplest
classical model that can simulate such a quantum model. Along these lines, Rao
and Vinay (2007) have shown that a large and natural class of 2QCFA, with
one-sided error acceptance, can be simulated efficiently by 2-way weighted finite
automata, with respect to Cortes-Mohri definition of language acceptance.

Another model of quantum automata was introduced by Bertoni, Mereghetti
and Palano (2003) - they are one-way quantum finite automata with a regular
language classical control (1QFACC).

1QFACC are actually the usual 1QFA that work in the MM-mode, but the
measurement that is used after each move is defined by an arbitrary, though
fixed, Hermitian observable and its classical outcomes (eigenvalues) are seen as
elements of a special (control) alphabet Λ. With each 1QFACC A a regular
(control) language L ⊆ Λ∗ is associated and an input word is accepted iff the
corresponding word of eigenvalues obtained by measurements is in L.

Mereghetti and Palano (2006) have shown that 1QFACC accept, with respect
to the isolated cut point, exactly regular languages and that for some regular
languages 1QFACC are more succinct than the corresponding classical DFA.

In general, in case of quantum finite automata, the main problems to deal with
are: (a) to explore power of particular automata models; (b) to compare power of
various models of quantum and classical automata, especially probabilistic ones
(c) to explore succinctness of quantum models comparing with the classical ones.

Algebraic Methods in Quantum Informatics 97

Main methods to explore quantum versions of the classical finite automata,
their power and succinctness, are those used for the study of classical automata,
especially probabilistic automata: syntactical monoids, formal power series,

More in the spirit of the algebraic theory of classical automata has been the
approach due to Gudder (2000). He has introduced a quantum state machine
(QSM). A QSM is defined as M = 〈Q, q0, δ〉, where Q is a set of states, q0 is
the initial state and δ : Q × Q → C is a transition function satisfying the well-
formedness condition

∑
q δ(q1, q)∗δ(q2, q) = δq1,q2 , where δq1,q2 is the Kronecker

delta. The well-formedness condition is equivalent to the requirement that the
corresponding evolution is unitary.

A so-called q-state machine (qSM) was defined by Guder as M = 〈H, φ0, U〉,
where H is a Hilbert space, φ0 an (initial) state of H and U a unitary transfor-
mation on H .

Each QSM can be seen as a qSM. To each qSM correspond many QSM,
that can be obtained by choosing a proper orthonormal basis that includes the
state φ0.

Both concepts of QSM and qSM have been extended by adding sets of ac-
cepting states and by considering also inputs.

Recognizable functions defined by 1QFA working in MO-mode and also by
classical probabilistic one-way finite automata have been shown by Bozapa-
lidis (2003) to be a proper subclasse of so-called B-recognizable functions.3 B-
recognizable functions have been shown to have various nice property and as
ones for which cut-theorem also holds. This is another attempt to study more
powerful systems, at least in some sense, than quantum ones - at least from a
certain algebraic point of view.

Two another interesting generalizations of 1QFA with MO-mode of acceptance
are also due to Bozapalidis (2000). As an extention to tree are (bottom-up) quan-
tum tree automata (QTA). They are linearized tree automata whose transitions
are kn × k matrices having a certain “uniformity ” property. The class of func-
tions QTA specify (compute) is called the class of quantum recognizable (QR)
functions. The functions QTA compute assign probabilities to tree. The class pf
function QTA specify is convex and closed under product, complement and right
derivation.

A related concept is that of quantum Γ -algebra (QA), where Γ is a ranked al-
phabet. Such an algebraic structure is equal, from the computational power point
of view, with quantum tree automata. Quantum γ-algebra is a Hermitian (inner-
product) Γ -algebra, whose functions preserve Hermitian product, endowed with
a projection.

Cellular automata networks of finite automata is other very important model
of classical computation. One can even say that in the quantum case this could
be the most important model for local interactions performed in (quantum)

3 A function f : Σ∗ → C is called B-recognizable if for some bounded Σ-module A (A
bounded Σ-module is a Hermitian space A on which the monoid Σ∗ acts linearly
and whose reachability function hA : Σ∗ → A is bounded) of finite dimension, and
for some linear form φ : A → C it holds that f(w) = φ(hA(w)), for w ∈ Σ∗.

98 J. Gruska

nature. There have been many approaches published to define quantum cellular
automata, but one can hardly say that a fully satisfactory model has already
been found. The problem is how to make sure that global evolution, that has
to be specified by local actions, will be unitary - in case of infinite networks of
finite automata. C∗-algebras play by that also an important role.

5 Quantum Computation Primitives - Universality,
Optimization

Design of sufficiently powerful quantum computers is one of the major goals
of quantum information processing research. The principal difficulties that are
caused by decoherence, a destructive influence of the environment, and also the
principal difficulties that are behind design of entangling gates (gates that can
map a product state into an entangled state) make this task so difficult that it
is even unclear we can really overcome these difficulties. It is therefore of large
importance to search for various small universal sets G of computation primi-
tives, as well for programming (compiling) techniques that allow to implement
efficiently any unitary operation through a circuit consisting only from the gates
from G, or to design even some other computational primitives than unitary
gates (for details and references see Gruska, 2005).

It has been shown that the following sets of gates4 G1 = {Λ1(σ
1
2
z), H} and G2 =

{CNOT, H, σ
1
4
z } are universal, in the sense that any unitary can be approximated

arbitrarily well by circuits consisting of the gates from one of the sets G1 or G2.
Another important, and this time fully universal, set (though infinite) of gates
is the one consisting of the CNOT gate and all one-qubit gates. Using such gates
any unitary can be exactly implemented. In case we care only for implementation
(approximation) of real unitary matrices, there is a very simple universal set,
due to Shi (2003), consisting of the Toffoli gate TOF and the Hadamard gate H .

The problem of designing a circuit (as efficient as possible) to implement
a given unitary operation is also very non-trivial. It has been shown that the
number of one qubit gates and CNOT gates needed to implement a unitary for
n qubits is θ(4n).

Concerning compilation, it has been shown, using an idea borrowed from
the QR-decomposition in linear algebra, and using so-called Given’s rotation
matrices, that each n-qubit unitary can be implemented using O(n34n) one-
qubit and CNOT gates. Another compilation technique, based on cosine-sine

4 The basic gates that will be used in the following: Hadamard gate H =

1√
2

(
1 1
1 −1

)
, Pauli gates σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, CNOT =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ , Λ1(σ

1
2
z) =

(
I4 O4

O4 σ
1
2
z

)
, Toffoli gate TOF =

(
I4 O4

O4 σx

)
, where I4 and

O4 are unit- and zero-matrices of degree 4.

Algebraic Methods in Quantum Informatics 99

decomposition (CSD) of unitary matrices, has been developed and later improved
by R. T. Tucci. An important general and recursive method of decomposition
of any unitary matrix into one- and two-qubit unitary matrices, based on the
Cartan decomposition of the Lie group su(2n), is due to Khaneja and Glaser.
Using these methods it has been shown, for example, that there is a universal
circuit for realization of an arbitrary two-qubit gate with 3 CNOT gates and
19 elementary one-qubit rotation gates. However, already for 3-qubit gates the
simplest known universal circuit has 40 CNOT gates and 98 one-qubit gates.

At the circuit optimization it is of interest to consider the following three
concepts of equivalence of states:

– Two states |φ〉 and |ψ〉 are called identical if |φ〉 = |ψ〉;
– Two states |φ〉, |ψ〉 are equivalent up to a global phase if |φ〉 = eiθ|ψ〉, where

θ ∈ R.
– Two states |φ〉, |ψ〉 are equivalent up to a relative phase if |φ〉 can be mapped

into |ψ〉 by a unitary diagonal matrix with the diagonal (eiθ0 , eiθ1 . . . , eiθk).

As an illustration of importance of the above concepts let us consider the
Toffoli gate. This gate can be exactly implemented by a circuit with 6 CNOT
gates and 8 one-qubit gates.

On the other hand, the following circuit, see Figure 5, where Ry(θ) = e−iθσy/2,
with only 3 CNOT gates and 4 elementary rotations is equivalent up to the
relative phase to Toffoli circuit.

R y(π
4) R y(π

4) R y(π
4) R y(π

4)

Another recent surprising outcome is that that any unitary can be imple-
mented by a circuit consisting only of measurement gates and auxiliary ancilla
qubits. There is a variety of results along these lines. One such minimal univer-
sal set of measurement gates and ancilla qubits has been determined by Perdrix
(2007). It consists of one two-qubit observable σz ⊗σx, two one-qubit observables
σz and 1√

2
(σx −σy) and one one-qubit auxiliary ancilla. An obvious lower bound

is one 2-qubit observable and one 1-qubit ancilla. It is an open problem which
of the above bounds can be improved.

6 Quantum Circuits That Can be Simulated Classically

Another important area of the research in quantum informatics is to find out
for which algorithmic problems quantum algorithms cannot (can) be essentially
more efficient than classical ones.

100 J. Gruska

To this area belongs the problem for which type of quantum circuits we can
have an efficient classical simulation.

There are two remarkable results along these lines. An old result, due to
Gottesman and Knill, that says that so-called Clifford circuits, composed from
the gates CNOT, Hadamard,

√
σz and projection measurements, with respect to

the computational basis, can be simulate on classical computers in polynomial
time. A more recent result is due to Markov and Shi (2002), who showed that
quantum circuits can be simulated classically in time polynomial in the number
of gates and exponential in the tree-width of the correponding circuit graph. This
implies that quantum circuits with logarithmic tree-width can be simulated in
polynomial time on classical computers. This result has been used recently by
Aharonov et al. (2006) to show that Quantum Fourier Transform over Zq can
be simulated in polynomial time - a very surprising outcome.

The results just mentioned demonstrate that in order to get deeper results in
this area one needs to use deep mathematical, especially algebraic, methods and
results.

The above results also only underline the fact that one of the key problems
of QIPC is still to get a better understanding in what really lies the power of
quantum information processing and communication.

7 Quantum Algorithms Design Challenges

Attempts to solve variations of so-calledHidden SubgroupProblem (HSP), brought
a variety of interesting and important results concerning the design of quantum
algorithms. Actually, almost all speedups in quantum computing that seem to be
exponential have been obtained by solving some instances of HSP.

HSP is defined as follows: Given is an (efficiently computable) function f :
G → R, where G is a group and R is a finite set, and a promise that there exists
a subgroup G0 ≤ G such that

– f is constant on each left coset of G (with respect to G0);
– f is distinct on different cossets of G (with respect to G0).

(and in this sense G0 is hidden by f).
The task is to find a generating set for G0 (in polynomial time (in polylog|G|)

in the number of calls to the oracle for f and in the overall polynomial time).5

Four well known algorithmic problems can be reformulated as follows as spe-
cial cases of HSP.

Deutsch’s problem, G = Z2, f : {0, 1} → {0, 1}, x − y ∈ G0 ⇔ f(x) = f(y).
Decide whether G0 = {0} (and f is balanced) or G0 = {0, 1} (and f is
constant).

5 One way to solve the problem is to show that in polynomial number of oracle calls
(or time) the coset states corresponding to different candidate subgroups will have
exponentially small inner product and are therefore distinguishable.

Algebraic Methods in Quantum Informatics 101

Simon’s problem, G = Zn
2 , f : G → R. x − y ∈ G0 ⇔ f(x) = f(y), G0 =

{0(n), s}, s ∈ Zn
2 . Decide whether G0 = {0(n)} or G0 = {0(n), s}, with an

s �= 0(n) (and in the second case find s).
Order-finding problem, G = Z, a ∈ N, f(x) = ax, x−y ∈ G0 ⇔ f(x) = f(y),

G0 = {rk | k ∈ Z for the smallest r such that ar = 1.} Find r.
Discrete logarithm problem, G = Zr × Zr, ar = 1, b = am, a, b ∈ N,

f(x, y) = axby, f(x1, y1) = f(x2, y2) ⇔ (x1, y1) − (x2, y2) ∈ G0. G0 =
{(−km, m) | k ∈ Zr}. Find G0 (or m).

Another important problem that can be casted as a HSP is the Graph Iso-
morphism Problem to be discussed in more details later.

Quantum version of the HSP assumes the access to the oracle f(|g〉|0〉) =
|g〉|f(g)〉 for g ∈ G. If this oracle is applied to a superposition of all group
elements (basis states), we have

Uf (
1√
|G|

∑
g∈G

|g〉|0〉) =
1√
|G|

∑
g∈G

|g〉|f(g)〉

and therefore, if the second register is measured, we get a mixed state

ρH =
|G0|
|G|

∑

g∈{coset representatives}
|gG0〉〈gG0|,

where |gG0〉 are so-called quantum (left) coset states

|gG0〉 =
1√
|G0|

∑
h∈G0

|gh〉.

The quantum coset states, just introduced, play an important role in deal-
ing with HSP. They are important because they encode the hidden subgroup.
One of the key questions is how much information one can obtained from quan-
tum coset states using POVM. In case of Abelian groups, a POVM operating
on one coset states exists that can extract polynomial amount of information
about the hidden subgroup. This measurement is effectively implementable us-
ing Quantum Fourier Transform over finite groups and this holds also for some
non-Abelian groups. However, Moore et al. (2005) have shown that for solv-
ing the graph isomorphism problem, POVM can obtain only exponential small
amount information for one or two coset states. They also showed that entangled
measurements on at least Ω(n lg n) states are needed to get useful information
in case of the graph isomorphism problem.

Kitaev showed that there is a quantum polynomial time algorithm to solve
the HSP in the case of Abelian groups.

The above result also implies that factoring and discrete logarithm computa-
tion can be done in quantum polynomial time - famous results of P. Shor. It is an
open problem whether the HSP can be solved in quantum polynomial time also
for all non-Abelian groups. A positive solution of this problem would imply, for

102 J. Gruska

example, that also the graph isomorphism problem, another famous and very im-
portant algorithmic problem, known to be in NP, but not known to be in P and
also unlikely to be NP-complete, can be solved in quantum polynomial time.

A lot of research concentrates on attacking HSP for non-Abelian groups. For
example, it has been shown (by Bacon et al. (2005) and others) that HSP is
solvable in quantum polynomial time for several types of non-Abelian groups:
for dihedral groups, for almost Abelian groups, for near Hamiltonian groups, for
Heisenberg groups Z2

p �Zp (for which classical query complexity is exponential).
A series of negative results towards a standard approach to solving HSP for

non-Abelian groups have also appeared, They indicate that to solve HSP for
non-Abelian groups some new approach will likely be needed and not the one
based on Quantum Fourier Transform. It has been even shown that in order to
solve HSP for non-Abelian groups in general, techniques for efficient measure-
ments across multiple copies of the Hidden subgroup state have to be developed.
Indeed, it has been shown that the HSP becomes a problem of optimal state
discrimination. It has also been shown (Bacon, 2006), that so-called Glebsch-
Gordan transform over Heisenberg groups is an important new primitive for
solving algorithmic problems in general and to solve HSP for Heisenberg groups
in particular. (The key step by that was a demonstration that HSP and the Hid-
den Subgroup Conjugacy Problem are polynomially equivalent for the Heisenberg
group.) On the other hand, it has been shown, by Ettinger et al. (2004), that
quantum query complexity of HSP is polynomial.

In the above context, of importance are the following negative results of Hall-
gren et al. (2006): they showed that for sufficiently non-Abelian groups the HSP
is hard for quantum computers in the sense that any quantum algorithm us-
ing the coset state framework requires exponential time unless it makes highly
entangled measurements of Ω(lg |G|) registers. The problem is that highly en-
tangled measurements seem to be very hard to implement. Quantum sieves is
one way to carry out efficiently such measurements and that was used by Kuper-
berg (2005), who also used the Glebsh-Gordan transform, for solving HSP for
dihedral groups, with subexponential algorithm.6 However, Moore et all. (2006)
have shown that no such approach yields an effective algorithm for the HSP on
symmetric groups.

Graph Isomorphism Problem (GIP) reduces to the HSP over symmetric groups,
Since GIP is such a prominent case of HSP for non-Abelian groups, an intensive
study of this problem brought also a variety of interesting and important results. It
has been shown that the graph isomorphism problem belong to a similar complex-
ity classNP∩co-AM, as integer factorization (NP∩co-NP), and also that HSP
represents a systematic way to approach this problem. (Another known option, see
Hallgren et al. (2006), not much explored yet, is to create a uniform superposition
of all graphs isomorphic to a given graph.) It has been shown that in order to solve a

6 He created a measurement for the dihedral group operating on 2O(
√

lg |G|) coset states

that also takes 2O(
√

lg |G|) time to implement - also in some other cases efficiently
implementable measurements on a constant number (1 or 2) of coset states were
shown.

Algebraic Methods in Quantum Informatics 103

HSP relevant to graph isomorphism one needs to develop techniques how to imple-
ment efficiently measurement of O(lg |G|) registers containing the quantum coset
states.ChildandWocjan(2005)exploredthehiddenshiftapproach(tobediscussed
later) to the graph isomorphism and showed that o(n lg n) of the hidden shift states
contain only exponentially little information about the isomorphism.

Negative results concerning HSP for non-Abelian groups have also positive
impacts. Indeed, Moore at al. (2007) designed a simple function that is believed
to be one-way and secure against even quantum attacks, because inverting of
this function reduces to solving the HSP over general linear groups (which is at
least as hard as HSP over symmetric groups). It is the function fV parametrized
over a set V = {v1, v2, . . . , vn} of randomly chosen elements from Fn

q , where q is
a small prime, and for an invertible n × n matrix M over Fq,

fV (M) = {Mv | v ∈ V }

and fV returns the resulting set of vectors as an unordered set.
Closely related to the HSP is the Hidden Shift Problem (HSHP) - another

interesting/important problem. In the HSHP, given are two functions f and g
for which there is a shift s such that f(x) = g(x + s) for each x - the task is to
find s. van Dam et al. (2002) solved HSHP for several types of functions; one of
them is the Shifted Legendre Symbol Problem: Given is a function

(
x+s

p

)
as an

oracle, for a prime p, find s. The HSHP have been also solved using Quantum
Fourier Transform. The Hidden coset problem, see van Dam (2002), is another
important problem - and a generalization of both HSP and HSHP. Dealing with
these problems demonstrated the ability of the Quantum Fourier Transform to
capture subgroup and shift structure. Making use of specific properties of special
groups is one way to approach the HSP and its variants.

Since non-Abelian groups are so hard to handle in case of the HSP, it is
natural to explore which important group-theoretic algorithmic problems are
solvable in quantum, but not classical, polynomial time for (some) non-Abelian
groups. Along these lines, Watrous (2000) showed quantum polynomial time
algorithm to compute orders of solvable groups - to this problem one can reduce
several other problems for solvable groups, such as membership testing, testing
equality of subgroups and so on. Algorithms work in the setting of black-box
groups (where elements are uniquely encoded by strings of the same length and
group operations are peformed by an oracle at unit cost). (Observe that solvable
groups of order ≤ 60 are Abelian.)

8 Quantum Entanglement

The concept of quantum entanglement is primarily concerned with the states of
multipartite systems.

For a bipartite quantum system, represented by the Hilbert space H = HA ⊗
HB, a pure state |Φ〉 is called an entangled pure state if it cannot be decomposed
into a tensor product of a state from HA and a state from HB. A mixed state

104 J. Gruska

(density matrix) ρ of H is called an entangled mixed state if ρ cannot be written
in the form

ρ =
k∑

i=1

piρA,i ⊗ ρB,i

where ρA,i (ρB,i) are density matrices in HA (in HB) and
∑k

i=1 pi = 1, pi > 0.
In other words, ρ is entangled if it is not a mixture of tensor products of density
matrices of subsystems.

Less formally, quantum entanglement is a subtle nonlocal and non-classical
correlation among the subsystems of a quantum system. Entanglement can also
be characterized and quantified as a feature of quantum system that cannot be
created through local quantum operations and classical communications among
the parts.

Quantum entanglement as a resource allows: (a) to perform processes that are
classically impossible; (b) to speed-up some (quantum) algorithms; (c) to make
communications more efficient; (d) to generate classical cryptographic keys in
unconditionally secure way; (e) to make transmission of quantum information
in unconditionally secure way; (f) to enlarge capacities of (classical) channels;
(g) to act as catalyst for various operations that are otherwise impossible. For
details see Gruska (1999, 2003), Horodeckis (2007).

Fundamental properties of quantum entanglement can be summarized as fol-
lows: (a) entanglement is an observable phenomenon that does not depend on a
physical representation; (b) entanglement enables and is consumed by a variety
of tasks; (c) entanglement obeys a set of as yet not fully understood principles of
behaviour; (d) entanglement is shared according to strict laws and limitations;
(e) entanglement cannot be increased by local actions and classical communica-
tions; (f) entanglement is a precious resource that is very difficult to create, to
store and to transmit.

There are many basic problems concerning entanglement, especially concerning
multipartite entanglement, that need to be solved and where algebraic methods are
of large importance: (a) How to detect entanglement of multipartite systems? (b)
How many inequivalent types of entanglement are there in multipartite systems?
(c) Which types of entanglement we have in multipartite systems? (For example,
what are the properties of bound entangled mixed states (from which one cannot
distill pure entanglement)?) (d) What are the proper axioms for measures of en-
tanglement of multipartite systems? (e) Which measures of entanglement of mul-
tipartite systems are useful and what are the relations between them? (f) What
are the laws and limitations of entanglement sharing among various parties?

A variety of techniques have been developed to get deeper insights into the
laws and limitations of entanglement. For example: an investigation of the states
and operators transformations, reducibilities and equivalences; entanglement in-
variants; entanglement monotones; measures of entanglement, as well as dynam-
ics and frequency of entanglement.

Example - quantum invariants. Any quantity of quantum states that is invariant
with respect to local unitary transformations is called entanglement invariant.

Algebraic Methods in Quantum Informatics 105

There are two basic reasons for studying quantum invariants: (a) any good mea-
sure of entanglement has to be invariant under local unitary transformations -
it has to be a expressed in terms of entanglement invariants; (b) the invariants
of multipartite states give the finest discrimination between different types of
entanglement.

A general theory of invariants of mixed multipartite states has been intro-
duced by Rains (1997) and Grassl et al. (1998). Invariants of entanglement can
be of various types. Of a special interest are so called polynomial invariants –
polynomial functions of amplitudes of quantum state.

For example, for pure states

|ψ〉 =
n∑
ij

αij |ei〉|ej〉,

with bases {ei} and
∑m

ij αijα
∗
ij = 1, of an n × n bipartite system A ⊗ B, the

reduced density matrix has the form

ρ0 = AA†, where A = {αij},

and of importance are the following polynomial invariants

Ik = Tr(AA∗)k+1, k = 0, 1, . . . , n.

In case |ψ〉 =
∑n

i=1

√
λi|ei〉|ei〉,

Ik =
n∑

i=1

λk+1
i .

It has also been realized that entanglement has many faces. One can see
it also as a bridging notion between QIPC science and so different fields as
condense-matter physics, quantum gravity and so on. There are also various
approaches to generalize this concept. One of the recent ones, see Barnum et
al. (2003), is based on the idea that quantum entanglement may be directly
defined through expectation values of preferred observables - without reference
to preferred subsystem decomposition. Such a framework allows for non-trivial
entanglement to exist within a single indecomposable quantum system,....

9 Quantum and Other Non-Localities

The fact that measurement of entangled states creates non-local correlations,
what can be seen, surprisingly, also as an important information processing re-
source, is perhaps the most important impact of entangled states. It is therefore
natural that an attention in QIPC starts to orient not only on the study of
non-locality quantum entanglement induces, but also other potential types of
non-locality. The key observation here is the fact that quantum nonlocality is

106 J. Gruska

non-signaling and therefore does not contradict relativity theory. Recently, there-
fore, attempts started to explore whether there are, within the current physical
framework, stronger non-signaling non-localities than the ones quantum mechan-
ics allows. Let us now discuss such potential non-localities, their motivations,
impacts, but also weaknesses.

The behaviour of a bipartite quantum state under measurement can be de-
scribed by a conditional probability distribution Pab|xy, where x and y denote
the chosen bases for measurement and a with b are corresponding measurement
outputs.

Px

a

y

b
ab|xy

John Bell was the first to recognize that there are measurement bases such
that the resulting behaviour is not local, i.e. cannot be explained by shared
classical information.

Bell also showed the existence of inequalities, that motivated definition of
so-called Bell inequalities, that cannot be violated by any local system, but are
violated when some entangled states are measured.

Non-locality exhibited by the measurement of the EPR state can be seen as
the implementation of the following EPR-box

EPR−box

x y

ba

x = y implies a = b

Also non-locality exhibited by the following PR-box does not allow superlu-
minal communication and therefore does not contradict special relativity.

Here we denote input measurements and outcomes by binary values. For the
PR-box it holds

Prob[a = b|(x, y) �= (1, 1)] = 1

Prob[a = b|(x, y) = (1, 1)] = 0

The idea of PR-boxes arises in the following setting. Let us have two parties, A
and B, and let each of these parties X perform two measurements on a quantum
state with two outcomes mX

0 and mX
1 , with 0 and 1 as potential values.

Algebraic Methods in Quantum Informatics 107

x y

ba

PR−box x . y = (a + b) mod 2

Let us denote a bound on correlations between two such measurements as

B =
∑

x,y∈{0,1}
Prob(mA

x ⊕ mB
y = x · y).

Famous Bell/CHCS inequality says that B ≤ 3 in any classical hidden variable
theory (that is a theory with shared random variables). So-called Cirel’son’s
bound (Cirel’son, 1980), says that the maximum for B in quantum mechanics is
2 +

√
2.

Popescu and Rohrlich (1997) developed a model in which the maximal possible
bound, 4, is achievable.

PR-boxes are, more exactly they would be, very powerful. Indeed, PR-boxes
are non-local, yet they are causal; using one PR-box one can simulate measure-
ment of the EPR-state; using PR-boxes one can make bit commitment and 1/2-
oblivious transfer unconditionally secure; having PR-boxes one could simulate
any secret multiparty computation and solve any multipartite communication
problem by communicating a single bit - what is not to believe. From this result,
obtained using quantum communication complexity tools, by van Dam (2000),
it follows that PR-boxes cannot exist (for details and references see Scarani
(2006)).

PR-boxes gave rise to the following basic questions: (a) Why are the correla-
tions achievable by quantum mechanics not maximal among those that preserve
causality? (b) How well the correlations of PR-boxes can be approximated by
devices that follow laws of physics?

It has been shown, see Brassard et al. (2005), that the availability of apriori
shared entanglement allows to approximate PR-boxes with success probability
cos2 π

8 = 0.854 and that in any physical world in which it is possible, without
communication, to approximate PR-boxes with probability greater than 3+

√
6

6 ≈
90.8%, every Boolean function could be, probabilistcally, computed using only
one bit of communication.

PR-boxes are an important tool to study non-locality. However, they are not a
universal building block of non-local correlations. Also their relation to entangled
states is far from simple. One PR-box is enough to simulate (measurement on)
maximally entangled two-qubit state, but not for every not-maximally entangled
state. Moreover, there are tasks that can be done with n EPR-states, but require
2n PR-boxes (see again Scarani (2006) for references and more details).

108 J. Gruska

Remark. For almost 40 years it has been assumed that maximaly entangled
states are the most non-local quantum states. However, it has recently emerged
(see Methot and Scarani, 2006) that, for all known measures of non-locality,
non-maximally entangled states are in general more non-local than maximally
entangled states. An understanding has therefore developed that non-locality
and entanglement are two different concepts and resources!

10 Bell Inequalities

Another important tool, and a beautiful research area by itself, to study non-
locality, where algebraic and geometric tools dominate, are so-called Bell in-
equalities, see Gisin (2007) for a survey of the key open problems. One can even
say that Bell inequalities are at the heart of the study of non-locality.

Technically, Bell inequalities are relations between conditional probabilities
that are valid under locality assumption. They got of importance due to the fact
that there are quantum states whose measurements produce correlations that
violates some Bell inequalities - so called Bell theorem. This fact has changed
essentially our view of the physical world. At the same time, there are beautiful
and difficult problems related to Bell inequalities that require to use sophisticated
algebraic and geometric methods.

Let Pr(a, b, c, ... | x, y, z, ...) denote the conditional probability that parties
A, B, C, ... produce the outputs a, b, c, ... when they receive inputs x, y, z,
Typically, parties perform measurements x, y, z, ... with outcomes a, b, c, ... Mea-
surements are performed under the assumption of non-locality. That means that
there is a probability distribution Pr(λ) such that

Pr(a, b, c, ...|x, y, z, ...) =
∑

λ

Pr(λ) · Pr(a|x, λ) · Pr(b|y, λ) · Pr(c|z, λ) · . . .

The set of such correlations is convex, with finitely many vertices – a polytope
bounded by hyperplanes.

All local correlations lie on one side of the hyperplanes and therefore they
necessary satisfy inequalities of the type

∑
a,b,c,...,x,y,z,...

αx,y,z,...
a,b,c,... Pr(a, b, c, . . . x, y, z, . . .) ≤ γ

called usually as Bell inequalities.
Importance of Bell inequalities stems from the fact that a quantum state ρ is

said to be non-local iff there are measurements on ρ that produces a correlation
that violates a Bell inequality.

Perhaps the most famous is so-called CHCS-inequality

E(x = 0, y = 0) + E(x = 0, y = 1) (1)
+ E(x = 1, y = 0) − E(x = 1, y = 1) ≤ 2 (2)

Algebraic Methods in Quantum Informatics 109

where
E(x, y) = Pr(a = b | x, y) − Pr(a �= b|x, y)

Some of the numerous open problems concerning Bell inequalities (see Gisin
(2007)):

– Is there a finite set of inequalities such that no other inequality is relevant
with respect to that set? (An inequality is relevant with respect to a given
set of inequalities if there is a quantum state violating it, but not violating
any of the inequalities in the set.)

– Why are almost all known Bell inequalities for more than two outcomes
maximally violated by states that are not maximally entangled?

– Is there a bound entangled state that violates some Bell inequalities?
– Given a multiparty quantum state ρ, how can we know whether ρ is non-

local, i.e. whether there is a Bell inequality and measurements such that
quantum physics predicts a violation of the inequality?

11 Grand Challenges of Quantum Informatics

Finally, let us introduce several grand challenges quantum informatics should
deal with where algebraic and combinatorial methods can be expected to play a
very important role.

(a) To “un-reveal secret of secrets” - Is our universe polynomial or exponential
place (see Aaronson (2005))? (b) To get a better understanding of quantum
mechanics using QIPCC concepts and tools; (c) To understand power of non-
locality that goes beyond quantum mechanics; (d) To find out how far we can get
beyond quantum mechanics; (e) To find out whether QM is an approximation of a
cosmological non-local theory; (f) To get a deeper understanding of multipartite
entanglement.

References

1. Aaronson, S.: Are quantum states exponentially long vectors? quant-ph/0507242
(2005)

2. Aharonov, D., Landau, Z., Makowsky, J.: The quantum FFT can be classically
simulated. quant-ph/0611156 (2006)

3. Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical
states. quant-ph/9911009 (1999)

4. Bacon, D.: How a Glebsh-Gordan transform helps to solve the Heisenberg Hidden
Subgroup problem. quant-ph/0612107 (2006)

5. Bacon, D., Childs, A., van Dam, W.: Optimal measurements for the dihedral hidden
subgroup problem. quant-ph/0501044 (2005)

6. Barnum, H., Knill, E., Ortiz, G., Somma, R., Viola, L.: A subsystem-independent
generalization of entanglement. quant-ph/0305023 (2003)

7. Bertoni, S., Mereghetti, K., Palano, B.: Quantum computing: 1-way quantum
automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20.
Springer, Heidelberg (2003)

110 J. Gruska

8. Bozapalidis, S.: Quantum recognizabla tree functions. In: Proceedings of the Con-
ference on Unconventional models of computation - UMC’2K, pp. 25–47 (2000)

9. Bozapalidis, S.: Extending stochastic and quantum functions. Theory of computing
systems 36(3), 183–197 (2003)

10. Brassard, G., Buhrman, H., Linden, N., Méthot, A.A., Tapp, A., Unger, F.: A limit
on non-locality in any world in which communication complexity is not trivial.
quant-ph/0508042 (2005)

11. Cerf, N., Gisin, N., Masar, S., Popescu, S.: Quantum entanglement can be simulated
without communication. Physical Review Letter, 94:220403 (2005)

12. Cirel’son, B.S.: Quantum generalization’s of Bell’s inequality. Letters in Mathe-
matical Physics 4(2), 93–100 (1980)

13. Clifton, R., Bub, J., Halvorson, H.: Characterizing quantum theory in terms of
information-theoretic constraints. quant-ph/0211089 (2002)

14. Ettinger, M., Hoyer, P., Knill, E.: The quantum query complexity of the hidden
subgroup problem is polynomial. quant-ph/0401083 (2004)

15. Gisin, N.: Bell inequalities: many questions, a few answers. quant-ph/0702021
(2007)

16. J. Gruska. Quantum computing. McGraw-Hill, 1999-2005, see also additions and
updatings of the book on http://www.mcgraw-hill.co.uk/gruska

17. Gruska, J.: Descriptional complexity issues in quantum computing. Automata, Lan-
guages and Combinatorics 5(3), 198–218 (2000)

18. Gruska, J.: Quantum entanglement as a new quantum information processing re-
source. New Generation Computing 21, 279–295 (2003)

19. Gruska, J.: General Theory of information transfer and combinatorics, Universal
sets of quantum information processing primitives and optimal use of such primi-
tives, pp. 356–377. Springer-Heidelberg (2005)

20. Gruska, J.: From informatics to quantum informatics. In: Proceedings of the Fourth
IFIP International Conference on Theoretical Computer Science- TCS 2006 at the
World Computer Congress, pp. 17–46 (2006)

21. Gruska, J.: Recent advances in Formal Languages and Applications. Studies in
Computational Intelligence 25, 81–117 (2006)

22. Gudder, S.: Basic properties of quantum automata. email: sgudder@cs.du.edu
(2000)

23. Hallgren, S., Moore, C., Roetteler, M., Russel, A., Sen, P.: Limitations of quantum
coset states for graph isomorphism. In: Proceedings of 38th STOC, pp. 604–617
(2006)

24. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entangle-
ment. quant-ph/0702225 (2007)

25. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. New Generation Computing 35, 170–188 (2005), see also quant-
ph/0302112.

26. Markov, I., Shi, Y.: Simulating quantum computation by contracting tensor. quant-
ph/0511069 (2002)

27. Mereghetti, C., Palano, B.: Quantum finite automata with control language. Tech.
rep. (2006)

28. Methot, A.A., Scarani, V.: An anomality of non-locality. quant-ph/0601210 (2000)
29. Moore, C., Russell, A., Sniady, P.: On the impossibility of a quantum sieve algo-

rithm for graph isomorphism: unconditional result. quant-ph/0612089 (2006)
30. Moore, C., Russell, A., Vazirani, U.: A classical one-way function to confound

quantum adversaries. quant-ph/0701115 (2007)

http://www.mcgraw-hill.co.uk/gruska

Algebraic Methods in Quantum Informatics 111

31. Nielsen, M.A., Chuang, I.I.: Quantum information processing. Cambridge Univer-
sity Press, Cambridge (2000)

32. Rao, M.V.P., Vinay, V.: Quantum finite automata and weighted automata (2007)
33. Perdrix, S.: Towards minimal resources of measurement-based quantum computa-

tion. quant-ph/070.0202 (2007)
34. Popescu, S., Rohrlich, D.: Causality and non-locality as axioms for quantum me-

chanics. quant-ph/9709026 (1997)
35. Scarani, V.: Feats, features and failures of the PR-box. quant-ph/0603017 (2006)
36. Shi, Y.: Both Toffoli and controlled-NOT need little help to do universal compu-

tation. quant-ph/0205115 (2002)
37. Short, T., Gisin, N., Popescu, S.: The physics of no-bit commitment generalized

quantum non-locality versus oblivious transfer. quant-ph/0504134 (2005)
38. Smolin, J.A.: Can quantum cryptography imply quantum mechanics. quant-

ph/0310067 (2003)
39. Tucci, R.R.: A rudimentary quantum compiler. quant-ph/9902062 (1999)
40. van Dam, W.: Implausible consequences of superstrong nonlocality. quant-

ph/0501159 (2005)
41. Hallgren, S., van Dim, W., Ip, L.: Quantum algorithms for some hidden shift prob-

lems. quant-ph/0211140 (2002)
42. Watrous, J.: Quantum algorithms for solvable groups. quant-ph/0011023 (2000)

Recognizable vs. Regular Picture Languages

Oliver Matz

Institut für Informatik, Universität Kiel, Germany
matz@ti.informatik.uni-kiel.de

1 Introduction

The class of regular word languages plays a central role in formal language theory.
Considerable effort has been made to transfer definitions and applications from
word languages to their two-dimensional analog, the picture languages, where
one considers (two-dimensional) matrices rather than (one-dimensional) words.

One may ask for a “natural” adaption of the class of regular word languages
for pictures. The class of recognizable picture languages is usually considered
the correct answer, chiefly because it is equivalently characterized by several for-
malisms such as different variants of tiling-systems, non-deterministic on-line tes-
sellation automata, Wang-systems, existential monadic second-order logic, and
doubly ranked monoids. This class has been studied intensively by several au-
thors, e.g. [12, 13, 30, 14, 15, 7, 18, 11, 10, 16, 17, 25, 26, 20, 21, 29, 22, 6].

The number of different characterizations indeed indicates that the recog-
nizable picture languages form a robust and therefore somewhat natural class
to study. The fact that the one-dimensional restriction of each of the above
formalisms characterizes regular word languages indicates that this class is a
promising candidate for the two-dimensional equivalent of regular word lan-
guages. We discuss picture language recognizability in Section 2.

However, there is also some indication that the class of recognizable picture
languages is too large. For example, for every linear bounded automaton A (a
Turing machine that never exceeds its input area), the set of pictures that (in the
straightforward way) encode a run of A, is tiling-recognizable. This implies in
particular that the emptiness problem is undecidable for tiling-systems. Besides,
the membership problem is NP-complete ([28]). These two facts show that
recognizable picture languages are computationally hard.

The mentioned characterizations of recognizable picture languages only adapt
a certain aspect of regular word languages, which I would like to name “decora-
tion + locality”. If a different aspect is taken as the starting point, one obtains
a different two-dimensional adaption.

Such a potential starting point are regular expressions, see e.g. [9, 10]. This
concept also allows for a straightforward adaption to two dimensions, the reg-
ular picture languages. Every regular picture language is recognizable, but the
converse is not true. In Section 3, we collect some indication that, nonetheless,
the concept of regular picture languages is a different straightforward adaption
of regular word languages.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 112–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Recognizable vs. Regular Picture Languages 113

2 Picture Language Recognizability = Decoration +
Locality

2.1 Definitions

Throughout the paper, Σ denotes a finite alphabet and is fixed unless stated
otherwise. A picture (over Σ) is a matrix over Σ. A picture language (over Σ)
is a set of pictures over Σ.

Let # be a fresh symbol not in Σ. A picture language L over Σ is local iff there
exists a set Δ of 2 × 2-pictures such that L contains exactly those pictures p for
which Δ contains all 2×2-sub-blocks of the picture which results by surrounding
p with the boundary symbol #.

Let Γ be another alphabet. A mapping π : Γ → Σ can be extended to pictures
and to picture languages as usual.

A picture language L over Σ is a projection of a picture language M over Γ
iff there exists a mapping π : Γ → Σ such that π(M) = L.

A picture language L is recognizable iff it is the projection of a local pic-
ture language. The class of recognizable picture languages over Σ is denoted by
REC(Σ) (or REC for short, if the alphabet is fixed).

2.2 Characterizations of Recognizable Picture Languages

Tiling Systems and Variations. The ingredients Σ, Γ , Δ, and π from the
above definition together form a tiling system. In some sense, a tiling-system is
a natural analog of non-deterministic finite automata to two-dimensions. It is
possible to modify the definition in order to make this analogy more evident:
We may assume w.l.o.g. that Γ is of the form Σ × Q for some finite set Q, and
that the projection mapping π is such that π(a, q) = a for every a ∈ Σ and
every q ∈ Q.

In this setting, the elements of Q could be called “states”, but I prefer to name
them “decorations” because the word “state” originally alludes to the intuition
of information that is internally stored in a device and lost after that device has
done another step of computation. Such a situation is not given for tiling systems.

There are several different ways to modify the definition of tiling systems
without affecting the defined class of picture languages. For example, one can
trade the size of the set Q of decorations against the block sizes in Δ: you
can buy smaller blocks, but you pay by increasing the number of decorations
(see [11]). This trade can be continued to separate the vertical from the horizontal
transitions, resulting in the definition of domino systems (see [17,18]), where the
set Δ contains 1 × 2- as well as 2 × 1-blocks (rather than 2 × 2-blocks).

The above trade “decorations against transition size” can be done in the op-
posite direction, too: If we allow the Δ to specify larger sub-blocks of the deco-
rated picture, then we can reduce the number of decorations to two. For technical
reasons it is more convenient to specify the forbidden sub-blocks of decorated
pictures rather than the allowed ones as above. The necessary construction has
been carried out in [21] in the setting of existential monadic second-oder logic.

114 O. Matz

On-Line Tessellation Automata. We have sketched different versions of
tiling systems above. They have in common that their operation on an input
picture p can be imagined as follows: Firstly, all input cells of p are decorated
simultaneously, and then the decorated input is checked for local compatibility
with the transition relation Δ.

The automation model of on-line tessellation automata is very similar, but it
sequentializes the decoration and combines the two phases. Such an automaton
assigns a decoration to every input cell in a pre-determined order, namely start-
ing in the top-left corner, proceeding diagonal-wise, and finishing in the bottom
right corner. Whenever a cell is decorated, the decorations of the previously
visited top or left neighbor (if present) are available.

It is immediate that for a non-deterministic automaton model, it does not
mean any loss of generality to pre-determine this order of decoration assignment,
so these automata indeed capture the class of recognizable picture languages. The
definition of deterministic on-line tessellation automata is straightforward, but
they are less powerful than non-deterministic ones.

Tiling Automata – Tiling Systems with Scanning Strategy. On-line tes-
salation automata fix a specific order in which decorations are assigned to input
cell, namely diagonal-wise from top-left to bottom-right. Recently, Anselmo,
Giammarresi, and Madonia (see [8]), have suggested a promising approach to
generalize this concept of a scanning strategy of a tiling system, resulting in the
definition of tiling automata.

For the non-deterministic case, fixing a scanning strategy does not limit the
expressive power. However, the presence of a scanning strategy allows for a
straightforward definition of determinism.

The various ways to introduce determinism into the concept of “decoration +
locality” are current research interest, see [26, 5, 3, 2, 4].

Wang Systems. Another approach to adapt the intuition of “decoration +
locality” to picture languages is described in [25] and called Wang system. The
essential difference to tiling systems is that a Wang system does not decorate the
input cells but rather the edges between them. The transitions specify 5-tuples
that can be visualized in the form

q1
q2 a q3

q4

with the obvious meaning. [25] shows how to translate tiling systems into Wang
systems and vice versa.

Quadrapolic Automata and Doubly Ranked Monoids. In [6], the au-
thors define another concept of non-deterministic automata for pictures. These
automata, too, are based on the “decoration + locality” intuition as their behav-
iors can be obtained as projections of local picture languages. Their definition

Recognizable vs. Regular Picture Languages 115

is the basis for a purely algebraic characterization of REC in terms of so-called
doubly ranked monoids.

Existential Monadic Second-Order Logic. A very important result in the
theory of formal languages is that the class of regular word languages is char-
acterized by the monadic second-oder logic (MSO) in the signature with the
successor relation, and even by the existential fragment thereof (EMSO).

The definitions of both MSO and its fragment EMSO can be adapted to the
two-dimensional case of pictures (or rather picture models) in a straightforward
way by introducing two distinct successor relation symbols for vertical and for
horizontal successors, respectively.

In the fundamental paper [11], the authors show that the class of recognizable
picture languages is not closed under complement, so it cannot be characterized
by MSO. In the same paper, it is shown that REC is characterized by EMSO.

The proof of this characterization can be seen as another application of the
intuition of “decoration + locality”: An existential quantification prefix over,
say, k sets of picture positions introduces a k-bit decoration, and the follow-
ing first-order (i.e., set-quantification-free) formula specifies a local constraint.
However, the proof is much more intricate because like in the word language
case, first-order formulas can express also properties that are not entirely local
but involve a limited form of counting: the first-order formulas characterize the
locally threshold testable (word or picture) languages.

Closure Properties. The well-known Kleene-Theorem states that the class of
word languages defined by NFA is the same as the class of word languages defined
by regular expressions (or, more conveniently, their corresponding closure pro-
perties—the difference is not essential). It is natural to ask how the situation is
for picture languages.

For this purpose we start with the definition of two partial concatenations on
the set of pictures. For two pictures p, r over alphabet Σ, their column concate-
nation p� r (or row concatenation p� r, respectively) is defined iff p and r have
equal height (or width, respectively) by the result of juxtaposing r to the right
(or to the bottom, respectively) of p.

As usual, these partial concatenations may be lifted to total operations on
picture languages. These operations may be iterated as follows: For a picture
language L, the column closure L�+ (or the row closure L�+, respectively) is
defined as the smallest picture language that is a superset of L and is closed
under column concatenation (or row concatenation, respectively).

The smallest class of picture languages over Σ which contains all singletons
and is closed under row- and column-concatenation and -closure, as well as under
union and intersection, is denoted ∩−REG(Σ). As shown in [9], REC(Σ) has all
of these closure properties but is not characterized by them, i.e., ∩−REG(Σ) �

REC(Σ), even in case Σ is a singleton. In other words, if we consider tiling sys-
tems the “right” adaption of NFA to two dimensions, then the Kleene-Theorem
does not carry over, even if the intersection is allowed on the side of regular
expressions.

116 O. Matz

By definition, REC is also closed under projection, meaning: for every lan-
guage L ∈ REC(Γ) and every alphabet mapping π : Γ → Σ, we have π(L) ∈
REC(Σ).

On the other hand, it is easy to see that every local picture language is the
projection of the intersection of picture languages in REG (see [29] for a detailed
analysis). From these two observations we may conclude:

Proposition 1. The finite-alphabet-indexed family (REC(Σ))Σ of picture lan-
guage classes is the smallest1 family (L(Σ))Σ such that

– for each finite alphabet Σ, the class L(Σ) contains all finite picture languages
over Σ and is closed under row- and column-concatenation and -closure as
well as under union and intersection, and

– for all finite alphabets Σ1, Σ2, every projection mapping π : Σ1 → Σ2 and
every picture language L ∈ L(Σ1) we have π(L) ∈ L(Σ2).

The above proposition is sometimes stated as: “REC is the smallest class of
picture languages closed under row- and column-concatenation and -closure as
well as under union, intersection and projection.” This is somewhat imprecise
because for the characterization it is essential to have a potentially unlimited
number of decoration symbols available, i.e., to pass to an arbitrarily large al-
phabet. The needed closure under projection is not a closure property of the
class REC over a fixed alphabet, but a closure property of the family of classes
of picture languages over all finite alphabets.

The above proposition is also often considered a Kleene-like theorem. I do
not subscribe to that point of view because the value and beauty of the orig-
inal Kleene-Theorem is that it shows that the assembling character of regular
expressions allows for equal expressive power as the (seemingly more flexible)
computational character of NFA. Allowing the intersection in regular expressions
already disturbs that assembling character, but additionally allowing arbitrarily
large auxiliary alphabets together with projection completely ruins that charac-
ter as it introduces decorations.

3 Regular Picture Languages

The class of regular picture languages (over Σ) (denoted REG(Σ) or simply
REG) is the smallest class of picture languages over Σ that contains all singleton
languages and that is closed under row- and column-concatenation and -closure,
as well as under union.

The survey [10] contains a lot of separation results about regular picture
languages and related classes. For example, the class REG is not closed under
intersection if the alphabet contains at least two symbols ([10]). In particular,
it is a proper subset of ∩−REG, which is in turn a proper subset of REC.

1 A family (X(Σ))Σ is smaller than another family (Y (Σ))Σ iff for all finite alphabets
Σ we have X(Σ) ⊆ Y (Σ).

Recognizable vs. Regular Picture Languages 117

In [23], a non-deterministic machine model is suggested. It is called picture
position pushdown automata (PPPA) and characterizes REG. Such a PPPA
proceeds stepwise, scanning each cell exactly once. It visits the input cells in
the same order as a regular expression would assemble the input picture: for
a column concatenation (or row concatenation, resp.), the left (or top, resp.)
part is scanned before the right (or bottom, resp.) part. In order to control this
process, the PPPA uses two distinct stacks of limited height on which it stores
picture positions together with states.

Another observation in [23] is that the partialness of the row- and column-
concatenation can, on the language level, be overcome. Intuitively, this means
that every regular picture language can be assembled without exploiting the par-
tialness of the concatenation: whatever picture has been assembled by a subex-
pression must contribute to the resulting language.

For the case of a singleton alphabet, REG is characterized by the finite unions
of Cartesian products of ultimately periodic subsets of N, just like the class
of regular languages over a singleton alphabet is characterized by ultimately
periodic subsets of N.

A standard example for a non-regular picture language is the set of all squares,
because the set {(n, n) | n ∈ N} is not a finite union of Cartesian products of
ultimately periodic subsets of N. The simplicity of this non-regular language
might be an indication that the class REG is too weak for practical purposes.

3.1 Concatenation Alternation Hierarchy

The investigation of regular picture languages naturally leads to a hierarchy
therein, which I would like to call concatenation alternation hierarchy. It is de-
fined as follows:

Definition 1. For every picture language L, the transposition of L is the set of
all transpositions of elements of L.

For n ≥ 1 and a finite alphabet Σ, the class rREGn(Σ) of picture languages
over Σ is inductively defined as follows:

– rREG1(Σ) is the set of regular word languages over Σ.
– For every n ≥ 1, the class rREGn + 1(Σ) is the smallest class of picture

languages that contains all transpositions of picture languages in rREGn(Σ)
and that is closed under union, row concatenation, and row closure.

Intuitively, a picture language is in the n-th level rREGn(Σ) of that hierarchy
iff it can be defined by at most n alternations of row- and column-operations.
Here, we count a sequence of consecutive applications of concatenations, itera-
tions, and unions as just one operation as long as its concatenations and itera-
tions are in the same direction (either row- or column).

The proofs in [19] show that, for every n, a picture language is in the n-th
level rREGn(Σ) of that hierarchy iff it is definable by a PPPA with maximal
stack height n.

As to my knowledge, it is open whether the concatenation alternation hierar-
chy is infinite or whether it collapses to a fixed level.

118 O. Matz

4 Generalizations of Regular Picture Languages

Different ways have been suggested to generalize regular operations. The first
obvious way is to add intersection or even complement to the closure proper-
ties. This increases the defined class of picture languages iff the alphabet is
non-trivial. In particular, the set of all squares cannot be obtained this way ei-
ther. In case of a non-trivial alphabet, adding the complement allows to define
non-recognizable picture languages, see [20]. In any case, intersection spoils the
assembling character and thereby the beauty of this concept.

A second way to generalize regular operations is to allow more complex con-
catenations. As suggested in [1], one may consider a partial 4-ary concatenation

that assembles four pictures p1, p2, p3, p4 to one picture p1 p2
p3 p4

and is defined iff,

firstly, p1 and p2 as well as p3 and p4 have matching heights, and, secondly, p1
and p3 as well as p2 and p4 have matching widths. In the same spirit one may
even consider 9-ary concatenations etc.

Some preliminary results on this subject and lots of examples can be found
in [1] for the case of a singleton alphabet.

A third obvious way to make regular expressions more powerful is to allow
the iteration to range over more complex compositions of concatenations. This
approach is presented in [18, 19] introducing the class REGOP. In these papers,
too, quite a lot of the results deal with the case of a singleton alphabet. I would
like to report a specific one from [18] here. For a function f : N → N, let Lf

be the set of all pictures of size m × f(m) for some m. For example, if f is the
identity function, then Lf is the set of squares.

Proposition 2. ([18]) If f is a polynomial with non-negative integer coeffi-
cients, then Lf ∈ REGOP. Conversely, if f is a function with Lf ∈ REGOP,
then f is bounded by a polynomial.

The degree of the polynomial depends on the nesting depth of the iteration.
Proposition 2 complements a result of [7] stating the corresponding fact for

the class REC and the singly exponential functions. The corresponding fact is
also true for the class REG and the constants functions. In particular, we have
REG � REGOP

� REC, even for a singleton alphabet.
Also [24] provides a fact similar to Proposition 2, this time for the k-th level of

the MSO quantifier alternation hierarchy and the k-fold exponential functions.

5 Conclusion

We started by asking which is the “correct” adaption of “regularity” to two
dimensions. Some reasonable criteria for the jury are:

Canonicity. The definition should adapt one or more definitions of regular word
languages in a straightforward way.

Robustness. Like for word languages, there should be several conceptually dif-
ferent characterizations.

Recognizable vs. Regular Picture Languages 119

Closure properties. Like forword languages, there shouldbe convenient closure
properties.

Simplicity. Like for word languages, it should be easy to tell for a given candidate
language whether it belongs to the class.

Computational complexity. Like for word languages, standard decision prob-
lems should be computationally very easy.

Two candidate picture languages classes are REC (recognizable picture lan-
guages) and REG (regular picture languages).

My personal conclusion is that this competition ends in a tie. Let us investigate
each of the five above criteria.

Concerning the canonicity, both classes do very well as their definition nat-
urally adapts a concept from the word languages: NFA (with “decoration +
locality” intuition) for REC, and that of assembling regular expressions in case
of REG.

Concerning the robustness, both classes perform satisfactory: REC is char-
acterized by tiling-systems, an adaption of non-deterministic finite automata.
Different flavors of their definition are possible, but all are based on the in-
tuition of “decoration + locality”. REC provides also a logical ([11]) and an
algebraic characterization ([6]), but no assembling regular expressions and no
satisfactory characterization by closure properties. REG has no logical nor alge-
braic characterization (except for the case of a singleton alphabet), but it has a
characterization by closure properties. I admit that the definition of its automa-
ton model, the PPPA, lacks the beauty and succinctness of tiling systems, but its
stepwise operation reflects the normal intuition of NFA better. Both candidates
lack a deterministic automaton model. Concluding, REC performs a little better
than REG in this category.

Concerning the closure properties, both classes perform well as they are
closed under union, (iterated) row-/column-concatenation, and projection. REC
additionally provides (the certainly precious) closure under intersection, whereas
REG does not. On the other hand, for the case of a singleton-alphabet, REG
provides closure even under complement, whereas REC does not ([22]). Again,
REC performs only slightly better than REG in this category.

Concerning thesimplicity,REGismywinnerbecause Ihadmadeseveralwrong
conjectures about recognizability of specific classes (see e.g. [26, 27]). Besides, the
set of top rows of a recognizable picture language forms a context-sensitive word
language, and every context-sensitive word language can be obtained this way (
[16]). This indicates also that recognizable picture languages are “as complex” as
context-sensitiveword languages. In contrast to that, the set of top rows of a regular
picture language is regular ([23]).

On the other hand, one might object that REG is too simple for practical
applications as there are very simple non-regular picture languages.

Concerning the computational complexity, REGis the clearwinner since the
membership problem for tiling systems is NP-complete ([28]), and the emptiness
problem for tiling systems is undecidable ([9]), whereas both of these problems are
in P for regular expressions.

120 O. Matz

Despite this tie, the class of recognizable picture languages has gained much
more attention. I think the class of regular picture language deserves more in-
terest in the future. It is a promising candidate for practical applications such
as two-dimensional pattern matching. Potential starting points for further inves-
tigation include deterministic automaton models in the spirit of PPPA as well
as regular expressions with enhanced concatenations (as suggested at the end
of [1]) or enhanced iteration of standard concatenations (as suggested in [19]).

References

1. Anselmo, M., Giammarresi, D., Madonia, M.: New operations and regular ex-
pressions for two-dimensional languages over one-letter alphabet. Theor. Comput.
Sci. 340(1), 408–431 (2005)

2. Anselmo, M., Giammarresi, D., Madonia, M.: From determinism to non-
determinism in recognizable two-dimensional languages. In: Developments in Lan-
guage Theory. Springer, Heidelberg (to appear, 2007)

3. Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambigiuos recogniz-
able two-dimensional languages. Inf. Theor. Appl. 40, 277–293 (2006)

4. Anselmo, M., Madonia, M.: Deterministic two-dimensional languages over one-
letter alphabet. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728,
pp. 147–159. Springer, Heidelberg (2007)

5. Borchert, B., Reinhardt, K.: Deterministically and sudoku-deterministically rec-
ognizable picture languages (2006), http://tobias-lib.ub.uni-tuebingen.de/
volltexte/2006/2503/

6. Bozapalidis, S., Grammatikopoulou, A.: Recognizable picture series. Journal of
Automata, Languages and Combinatorics 10(2/3), 159–183 (2005)

7. Giammarresi, D.: Two-dimensional languages and recognizable functions. In:
Rozenberg, G., Salomaa, A. (eds.) Developments in Language Theory, Proceedings
of the conference, Turku (Finnland), 1993, pp. 290–301. world scientific, Singapore
(1994)

8. Giammarresi, D.: Tiling recognizable two-dimensional languages. Springer, Heidel-
berg (2007) included in these proceedings

9. Giammarresi, D., Restivo, A.: Recognizable picture languages. In: Proceedings
First International Colloqium on Parallel Image Processing 1991. International
Journal Pattern Recognition and Artificial Intelligence, vol. 6, pp. 241–256 (1992)

10. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Sa-
lomaa, A. (eds.) Handbook of Formal Language Theory, vol. III, pp. 215–268.
Springer, New York (1996)

11. Giammarresi, D., Restivo, A., Seibert, S., Thomas, W.: Monadic second-order logic
and recognizability by tiling systems. Information and Computation 125, 32–45
(1996)

12. Inoue, K., Nakamura, A.: Nonclosure properties of two-dimensional on-line tessel-
lation acceptors and one-way parallel/sequential array acceptors. Transaction of
IECE of Japan 6, 475–476 (1977)

13. Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessellation
acceptors. Information Sciences 13, 95–121 (1977)

14. Inoue, K., Takanami, I.: A survey of two-dimensional automata theory. In: Das-
sow, J., Kelemen, J. (eds.) Proceedings 5th International Meeting of Young Com-
puter Scientists. 5th International Meeting of Young Computer Scientists. LNCS,
vol. 381, pp. 72–91. Springer, Heidelberg (1990)

http://tobias-lib.ub.uni-tuebingen.de/volltexte/2006/2503/
http://tobias-lib.ub.uni-tuebingen.de/volltexte/2006/2503/

Recognizable vs. Regular Picture Languages 121

15. Inoue, K., Takanami, I.: A characterization of recognizable picture languages.
In: Dassow, J., Kelemen, J. (eds.) Machines, Languages, and Complexity. LNCS,
vol. 381, pp. 133–143. Springer, Heidelberg (1992)

16. Latteux, M., Simplot, D.: Context-sensitive string languages and recognizable pic-
ture languages. Information and Computation 138, 160–169 (1997)

17. Latteux, M., Simplot, D.: Recognizable picture languages and domino tiling. The-
oretical Computer Science 178(1-2), 275–283 (1997)

18. Matz, O.: Klassifizierung von Bildsprachen mit rationalen Ausdrücken, Gram-
matiken und Logik-Formeln. Diploma thesis, Christian-Albrechts-Universität Kiel
(in German) (1995)

19. Matz, O.: Regular expressions and context-free grammars for picture languages.
In: Reischuk, R., Morvan, M. (eds.) STACS 97. LNCS, vol. 1200, pp. 283–294.
Springer, Heidelberg (1997)

20. Matz, O.: On piecewise testable, starfree, and recognizable picture languages. In:
Nivat, M. (ed.) ETAPS 1998 and FOSSACS 1998. LNCS, vol. 1378, pp. 203–210.
Springer, Heidelberg (1998)

21. Matz, O.: One quantifier will do in existential monadic second-order logic over
pictures. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450,
pp. 751–759. Springer, Heidelberg (1998)

22. Matz, O.: Dot-depth, monadic quantifier alternation, and first-order closure over
grids and pictures. Theor. Comput. Sci. 270(1-2), 1–70 (2002)

23. Matz, O.: A Kleene theorem for regular picture languages. Technical Report 0703,
Christian-Albrechts-Universität Kiel (2007)

24. Matz, O., Thomas, W.: The monadic quantifier alternation hierarchy over graphs
is infinite. In: Twelfth Annual IEEE Symposium on Logic in Computer Science,
Warsaw, Poland, pp. 236–244. IEEE Computer Society Press, Los Alamitos (1997)

25. Prophetis de, L., Varricchio, S.: Recognizability of rectangular pictures by wang
systems. Journal of Automata, Languages and Combinatorics 2, 269–288 (1997)

26. Reinhardt, K.: On some recognizable picture-languages. In: Brim, L., Gruska, J.,
Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 760–770. Springer, Heidelberg
(1998)

27. Reinhardt, K.: The #a = #b pictures are recognizable. In: Symposium on Theo-
retical Aspects of Computer Science, pp. 527–538 (2001)

28. Schweikardt, N.: The monadic quantifier alternation hierarchy over grids and pic-
tures. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 441–460. Springer,
Heidelberg (1998)

29. Simplot, D.: A characterization of recognizable picture languages by tilings by finite
sets. Theoretical Computer Science 218(2), 297–323 (1999)

30. Siromoney, R.: Advances in array languages. In: Ehrig, H., Nagl, M., Rosenfeld,
A., Rozenberg, G. (eds.) Graph-Grammars and Their Application to Computer
Science. LNCS, vol. 291, pp. 549–563. Springer, Heidelberg (1987)

From Algebraic Graph Transformation to

Adhesive HLR Categories and Systems

Ulrike Prange and Hartmut Ehrig

Technical University of Berlin, Germany
{uprange,ehrig}@cs.tu-berlin.de

Abstract. In this paper, we present an overview of algebraic graph
transformation in the double pushout approach. Basic results concern-
ing independence, parallelism, concurrency, embedding, critical pairs and
confluence are introduced. As a generalization, the categorical framework
of adhesive high-level replacement systems is introduced which allows
to instantiate the rich theory to several interesting classes of high-level
structures.

1 Introduction to Graph Transformation

Combining the important concepts of graphs, grammars and rewriting, the re-
search area of graph grammars or graph transformation is a discipline of com-
puter science which dates back to the 1970s. Methods, techniques, and results
from the area of graph transformation have already been studied and applied in
many fields of computer science, such as formal language theory, pattern recog-
nition and generation, compiler construction, software engineering, the model-
ing of concurrent and distributed systems, database design and theory, logical
and functional programming, artificial intelligence, and visual modeling. A de-
tailed presentation of various graph grammar approaches and application areas
of graph transformation is given in the handbooks [1, 2, 3].

This wide applicability is due to the fact that graphs are a very natural way
of explaining complex situations on an intuitive level. Hence, they are used in
computer science almost everywhere, for example for data and control flow dia-
grams, for entity relationship and UML diagrams, for Petri nets, for visualization
of software and hardware architectures, for evolution diagrams of nondetermin-
istic processes, for SADT diagrams, and for many more purposes.

The main idea of graph transformation is the rule-based modification of
graphs, as shown in Fig. 1. The core of a rule or production p is a pair of graphs
(L, R), called the left-hand side L and the right-hand side R. Applying the rule
p = (L, R) means finding a match of L in the source graph G and replacing
L by R, leading to the target graph H of the graph transformation. The main
technical problems are how to delete L from G and how to connect R with the
remaining context leading to the target graph H . In fact, there are several dif-
ferent solutions how to handle these problems, leading to several different graph
transformation approaches.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 122–146, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

From Algebraic Graph Transformation to Adhesive HLR Categories 123

p = (L, R)

Fig. 1. Rule-based modification of graphs

The algebraic graph transformation approach is based on pushout construc-
tions, where pushouts are used to model the gluing of two graphs along a common
subgraph. Intuitively, we use this common subgraph and add all other nodes and
edges from both graphs. In the algebraic approach, two gluing constructions are
used to model a graph transformation step. For this reason, this approach is also
known as the double-pushout (DPO) approach.

Roughly speaking, a production is given by p = (L, K, R), where L and R are
the left- and right-hand side graphs and K is the common interface of L and
R, i.e. their intersection. The left-hand side L represents the preconditions of
the rule, while the right-hand side R describes the postconditions. K describes
a graph part which has to exist to apply the rule, but which is not changed.
L\K describes the part which is to be deleted, and R\K describes the part to
be created.

A direct graph transformation with a production p is defined by first finding a
match m of the left-hand side L in the current host graph G and then construct-
ing the pushouts (1) and (2) in Fig. 2. For the construction of the first pushout,
however, a gluing condition has to be satisfied, which allows us to construct D
such that G is the gluing of L and D via K. The second pushout means that H
is the gluing of R and D via K. This means that a direct graph transformation
G ⇒ H in Fig. 2 consists of two gluing constructions, which are pushouts in the
category of graphs and graph morphisms.

L K Rl r

G D H

(1) (2)

Fig. 2. DPO graph transformation

124 U. Prange and H. Ehrig

The algebraic approach to graph transformation is not restricted to (stan-
dard) graphs, but has been generalized to a large variety of different types of
graphs and other kinds of high-level structures, such as labeled graphs, typed
graphs, hypergraphs, attributed graphs, Petri nets, and algebraic specifications.
This extension from graphs to high-level structures – in contrast to strings and
trees, considered as low-level structures – was initiated in [4, 5] leading to the
theory of high-level replacement (HLR) systems. In [6, 7], the concept of high-
level replacement systems was joined to that of adhesive categories introduced
by Lack and Sobociński in [8], leading to the concept of adhesive HLR cate-
gories and systems. There are several interesting instantiations of adhesive HLR
systems, including not only graph and typed graph transformation systems, but
also hypergraph, Petri net, algebraic specification, and typed attributed graph
transformation systems.

In addition to pushouts, which correspond to the gluing of graphs, adhesive
HLR categories are based on pullbacks, corresponding to the intersection and
homomorphic preimages of graphs. The basic axioms of adhesive HLR cate-
gories require construction and basic compatibility properties for pushouts and
pullbacks. These properties (and a few additional ones) allow to prove several
interesting results concerning transformations.

In Section 2, we introduce algebraic graph transformation based on the double
pushout approach and present the main results for transformations together
with illustrating examples. The categorical framework of adhesive HLR systems
is introduced in Section 3. For a more detailed presentation including all the
proofs and further results we refer to our book [7].

2 Algebraic Graph Transformation – The Double
Pushout Approach

In this section, we introduce graph transformation in the double pushout ap-
proach and give an overview of important results. We present the main results
with illustrative examples, but give only an intuitive idea of some of the new
notions used in these results. A formal definition of these notions and also the
proofs of these results are given in [7].

2.1 Graph and Typed Graph Transformation

In this section, we introduce graph and typed graph transformation systems, or
(typed) graph transformation systems, for short. In the following, we always use
an abbreviated terminology of this kind to handle both cases simultaneously.

A graph has nodes, and edges, which link two nodes. We consider directed
graphs, i.e. every edge has a distinguished start node (its source) and end node
(its target). We allow parallel edges, as well as loops. Graphs are related by
(total) graph morphisms, which map the nodes and edges of a graph to those of
another one, preserving the source and target of each edge.

From Algebraic Graph Transformation to Adhesive HLR Categories 125

Definition 1 (Graph). A graph G = (V, E, s, t) consists of a set V of nodes
(also called vertices), a set E of edges, and two functions s, t : E → V , the source
and target functions.

Given graphs G1, G2 with Gi = (Vi, Ei, si, ti) for
i = 1, 2, a graph morphism f : G1 → G2, f =
(fV , fE) consists of two functions fV : V1 → V2 and
fE : E1 → E2 that preserve the source and target
functions, i.e. fV ◦s1 = s2 ◦fE and fV ◦ t1 = t2 ◦fE.

If fV and fE are both injective (bijective) then f
is called an injective (isomorphic) graph morphism.

E1 V1

E2 V2

fE fV

s1

t1

s2

t2

=

Graphs and graph morphisms form the category Graphs of graphs.

A type graph defines a set of types, which can be used to assign a type to the
nodes and edges of a graph. The typing itself is done by a graph morphism
between the graph and the type graph.

Definition 2 (Typed graph). A type graph is a distinguished graph TG =
(VTG, ETG, sTG, tTG). VTG and ETG are called the vertex and the edge type
alphabets, respectively.

A tuple GT = (G, type) of a graph G together with a graph morphism type :
G → TG is then called a typed graph.

Given typed graphs GT
1 = (G1, type1) and

GT
2 = (G2, type2), a typed graph morphism f :

GT
1 → GT

2 is a graph morphism f : G1 → G2 such
that type2 ◦ f = type1.

Typed graphs and typed graph morphisms form

G1 G2

TG

f

type1 type2
=

the category GraphsTG of typed graphs over the type graph TG.

For simplicity, in the following we use the notation G for both graphs and typed
graphs.

Example 1. In the following, we model a variant of Dijkstra’s algorithm for mu-
tual exclusion (see [9]). Given two processes that compete for a resource used
by both of them, the aim of the algorithm is to ensure that once one process is
using the resource the other has to wait and cannot access it.

There is a global variable turn that assigns the resource to any of the processes
initially. Each process i has a flag f(i) with possible values 0, 1, 2, initially set
to 0, and a state that is initially non-active. If the process wants to access the
resource, its state changes to active and the flag value is set to 1. If the variable
turn has assigned the resource already to the requesting process, the flag can
be set to 2, which indicates that the process is accessing the resource. Then
the process uses the resource and is in its critical section. Meanwhile, no other
process can access the resource, because the turn variable cannot be changed in
this stage of the process. After the critical section has been exited, the flag is set
back to 0 and the state to non-active. Otherwise, if the resource is assigned to
a nonactive process, it can be reassigned and then accessed analogously by the
requesting process.

126 U. Prange and H. Ehrig

The type graph TG is given in Fig. 3. Each process is typed by P , a resource
is typed by R, and T denotes the turn. If the flag of a process is set to 0, we
do not depict it in the graph. The flag values 1 and 2 are shown by nodes typed
with F1 or F2, respectively, with a link from the corresponding process to the
node and a link to the required resource.

P

T

F1

F2

R

start

crit

check

setTurn

active

non−active

TG :

Fig. 3. Example type graph

A typed graph S is given in Fig. 4, containing two nonactive processes that
can compete for one resource, where the graph morphism type : S → TG is
given by the labels of the nodes and edges. �

(Typed) graph transformation is based on (typed) graph productions, which
describe a general way how to transform (typed) graphs. The application of a
(typed) graph production to a (typed) graph is called a direct (typed) graph
transformation. This is based on the concept of pushouts which is motivated to
be a gluing construction in the introduction.

Definition 3 (Graph production and transformation). A (typed) graph
production p = (L l← K

r→ R) consists of (typed) graphs L, K, and R, called
the left-hand side, gluing graph, and the right-hand side respectively, and two
injective (typed) graph morphisms l and r.

Given p, a (typed) graph G, and a
(typed) graph morphism m : L → G,
called match, a direct (typed) graph
transformation G

p,m
=⇒ H from G to a

(typed) graph H is given by the pushouts
(1) and (2), where the (typed) graph
morphism n is called comatch.

L K R

G D H

l r

f g

m k n(1) (2)

A sequence G0 ⇒ G1 ⇒ . . . ⇒ Gn of direct (typed) graph transformations is
called a (typed) graph transformation and is denoted by G0

∗⇒ Gn. For n = 0, we
have the identical (typed) graph transformation G0

id⇒ G0. Moreover, for n = 0
we allow also graph isomorphisms G0

∼= G′
0, because pushouts and hence also

direct graph transformations are only unique up to isomorphism.

From Algebraic Graph Transformation to Adhesive HLR Categories 127

PRP T

start

non−active

start

non−active

S :

Fig. 4. Example typed graph

Example 2. For our mutual exclusion example, we have five typed graph pro-
ductions shown in Fig. 5, where all morphisms are inclusions. The typed graph
production setF lag allows a nonactive process to indicate a request for the re-
source by setting its flag to 1. The typed graph production setTurn1 allows
the turn to be changed to an active process if the other process, which has the
turn, is nonactive. If the turn is already assigned to the active process, then the
turn remains in setTurn2. Thereafter, in the typed graph production enter, the
process enters its critical section. Finally, the process exits the critical section
with the typed graph production exit and another process may get the turn and
access the resource.

We can apply the typed graph production setF lag to the typed graph S given
in Fig. 4 with a match m, leading to the direct typed graph transformation
S

setF lag,m
=⇒ G1 shown in Fig. 6.

If we apply the typed graph productions setF lag, setTurn1, enter, setF lag,
and exit to S, then we obtain the typed graph transformation S

∗⇒ G shown in
Fig. 7. �

Now we analyze under what conditions a (typed) graph production p = (L ←
K → R) can be applied to a (typed) graph G via a match m. In general, the
existence of a context graph D that leads to a pushout (1) is required. This
allows us to construct a direct (typed) graph transformation G

p,m
=⇒ H , where, in

a second step, the (typed) graph H is constructed as the gluing of D and R via
K leading to a pushout (2). Note that the construction of D and H is unique
up to isomorphism.

Definition 4 (Gluing condition). A (typed) graph production p = (L l← K
r→

R) is applicable to a (typed) graph G via the match m if the following condition
holds:
p and m satisfy the gluing condition if
all identification points and all dangling
points are also gluing points, i.e. IP ∪
DP ⊆ GP , where

– the gluing points GP are those
nodes and edges in L that are not

L K R

G D H

l r

f g

m k n(1) (2)

deleted by p, i.e. GP = lV (VK) ∪ lE(EK) = l(K),

128 U. Prange and H. Ehrig

P R P R P RF1

start

non−active

setTurn

active

setF lag

P

T

P

R

P

T

P

R

P

T

P

R

non−active

setTurn

non−active

check

setTurn1

P T R P T R P T R

setTurn check

setTurn2

P

T

F1

R P

T

R P

T

R

F2
check crit

enter

P F2 R P R P R

crit

active

start

non−active

exit

Fig. 5. Example typed graph productions

– the identification points IP are those nodes and edges in L that are iden-
tified by m, i.e. IP = {v ∈ VL | ∃w ∈ VL, w
= v : mV (v) = mV (w)} ∪
{e ∈ EL | ∃f ∈ EL, f
= e : mE(e) = mE(f)},

– the dangling points DP are those nodes in L whose images under m are the
source or target of an edge in G that does not belong to m(L), i.e. DP =
{v ∈ VL | ∃e ∈ EG\mE(EL) : sG(e) = mV (v) or tG(e) = mV (v)}.

Example 3. For the direct typed graph transformation in Fig. 6, we analyze the
gluing, identification, and dangling points:

From Algebraic Graph Transformation to Adhesive HLR Categories 129

P R P R P RF1

P

P RT

P

P RT

P

P RT

F1

start

non−active

setTurn

active

start

non−active

start

non−active

start

non−active

start

non−active

setTurn

active

m

setF lag

S D G1

2

1

2

1

2

1

Fig. 6. Example direct typed graph transformation

– GP = l(K), which means that the gluing points in L are both nodes.
– IP = ∅, since m does not identify any nodes or edges.
– The resource node is the only dangling point: in S, there is an edge from the

turn node T (which has no preimage in L) to the resource node R, but there
is no edge from or to the upper process node P that is not already in L.

This means that IP ∪DP ⊆ GP , and the gluing condition is satisfied by m and
setF lag.

In contrast, the typed graph production deleteProcess given in the top row
of Fig. 8 is not applicable to S with the match m′. We have:

– GP = l(K), which means that there are no gluing points in L.
– IP = ∅, since m′ does not identify any nodes or edges.
– The process node in L is a dangling point: in S, there are two loops at this

node, which have no preimages in L.

This means that DP � GP , and the gluing condition is not satisfied by m′ and
deleteProcess. �

Now we shall define (typed) graph transformation systems and (typed) graph
grammars. The language of a (typed) graph grammar consists of those (typed)
graphs that can be derived from the start graph.

Definition 5 (Graph transformation system and graph grammar). A
graph transformation system GTS = (P) consists of a set of graph productions P .

130 U. Prange and H. Ehrig

PRP

T
start

non−active

start

non−active

S :

⇓setF lag

PRP

T

F1

setTurn

active

start

non−active

G1 :

⇓setTurn1

PRP

T

F1

check

active

start

non−active

G2 :

⇓enter

PRP

T

F2

crit

active

start

non−active

G3 :

⇓setF lag

PRP

T

F2

F1

crit

active

setTurn

active

G4 :

⇓exit

PRP TF1

start

non−active

setTurn

active

G :

Fig. 7. Example typed graph transformation

From Algebraic Graph Transformation to Adhesive HLR Categories 131

P ∅ ∅

P

P RT

start

non−active

start

non−active

m′

deleteProcess

S D

2

1

Fig. 8. Example of non-applicability

A typed graph transformation system GTS = (TG, P) consists of a type graph
TG and a set of typed graph productions P .

A (typed) graph grammar GG = (GTS, S) consists of a (typed) graph trans-
formation system GTS and a (typed) start graph S.

The (typed) graph language L of a (typed) graph grammar GG is defined by

L = {G | ∃ (typed) graph transformation S
∗⇒ G}.

Example 4. Combining the type graph in Fig. 3, the typed graph productions
in Fig. 5 and the start graph S in Fig. 4 we have the typed graph grammar
MutualExclusion = (TG, P, S) with P = {setF lag, setTurn1, setTurn2, enter,
exit}.

To show that this typed graph grammar indeed ensures mutual exclusion,
the whole derivation graph is depicted in Fig. 9. The nodes – which stand for
the graphs in the typed graph language – show, in an abbreviated notation,
the state of the processes. On the left-hand side of each node, the state of the
first process is shown, and also its flag value and if the turn is assigned to that
process. Analogously, this information for the second process is depicted on the
right-hand side. The marked nodes are those nodes where the resource is actually
accessed by a process – and only one process can access it at any one time. �

2.2 Overview of Results for (Typed) Graph Transformations

In the following, we present important results for (typed) graph transformations,
namely the

132 U. Prange and H. Ehrig

process 1 process 2
active active
setTurn crit
flag=1 flag=2

turn

process 1 process 2
active active
crit setTurn
flag=2 flag=1
turn

process 1 process 2
active active
setTurn check
flag=1 flag=1

turn

process 1 process 2
active active
check setTurn
flag=1 flag=1
turn

process 1 process 2
active non−act.
crit start
flag=2 flag=0
turn

process 1 process 2
non−act. active
start crit
flag=0 flag=2

turn

process 1 process 2
active active
setTurn setTurn
flag=1 flag=1
turn

process 1 process 2
active active
setTurn setTurn
flag=1 flag=1

turn

process 1 process 2
non−act. active
start check
flag=0 flag=1

turn

process 1 process 2
active non−act.
check start
flag=1 flag=0
turn

process 1 process 2
active non−act.
setTurn start
flag=1 flag=0

turn

process 1 process 2
non−act. active
start setTurn
flag=0 flag=1
turn

process 1 process 2
active non−act.
setTurn start
flag=1 flag=0
turn

process 1 process 2
non−act. active
start setTurn
flag=0 flag=1

turn

process 1 process 2
non−act. non−act.
start start
flag=0 flag=0
turn

process 1 process 2
non−act. non−act.
start start
flag=0 flag=0

turn

setF lag setF lag

setF lag setF lag

setTurn2 setTurn2
setF lag setF lag

setF lag setF lag

setF lag setF lag

setTurn2 setTurn2

enter enter

enter enter

setF lag setF lag

exit

exit

exit exit

setTurn1 setTurn1

S :

Fig. 9. Example language

– Local Church–Rosser and Parallelism Theorem,
– Concurrency Theorem,
– Embedding and Extension Theorem,
– Critical Pairs and Local Confluence Theorem,
– Graph Constraints and Application Conditions.

From Algebraic Graph Transformation to Adhesive HLR Categories 133

Local Church–Rosser and Parallelism Theorem

The first theorem is concerned with parallel and sequential independence of
direct (typed) graph transformations. We study under what conditions two di-
rect (typed) graph transformations applied to the same (typed) graph can be
applied in arbitrary order, leading to the same result. This leads to the Lo-
cal Church–Rosser Theorem. Moreover, the corresponding (typed) graph pro-
ductions can be applied in parallel in this case, leading to the Parallelism
Theorem.

Two direct (typed) graph transformations G
p1,m1=⇒ H1 and G

p2,m2=⇒ H2 are
parallel independent, if p1 does not delete anything p2 uses, and vice versa. This
means that all nodes and edges in the intersection of the two matches are gluing
items with respect to both transformations, i.e.

m1(L1) ∩ m2(L2) ⊆ m1(l1(K1)) ∩ m2(l2(K2)).

Analogously, two direct (typed) graph transformations G
p1,m1=⇒ H1

p2,m′
2=⇒ G′ are

sequentially independent, if p1 does not create something p2 uses, and p2 does
not delete something p1 uses or creates. This means that all nodes and edges
in the intersection of the comatch n1 : R1 → H1 and the match m2 are gluing
items with respect to both transformations, i.e.

n1(R1) ∩ m2(L2) ⊆ n1(r1(K1)) ∩ m2(l2(K2)).

With this notion of independence, we are able to formulate the Local Church–
Rosser and Parallelism Theorem.

Theorem 1 (Local Church–Rosser and Parallelism Theorem). Given
two parallel independent direct (typed) graph transformations G

p1,m1=⇒ H1 and
G

p2,m2=⇒ H2, there is a (typed) graph G′ together with direct (typed) graph trans-

formations H1
p2,m′

2=⇒ G′ and H2
p1,m′

1=⇒ G′ such that G
p1,m1=⇒ H1

p2,m′
2=⇒ G′ and

G
p2,m2=⇒ H2

p1,m′
1=⇒ G′ are sequentially independent.

Given two sequentially independent direct (typed) graph transformations

G
p1,m1=⇒ H1

p2,m′
2=⇒ G′, there are a (typed) graph H2 and direct (typed) graph

transformations G
p2,m2=⇒ H2

p1,m′
1=⇒ G′ such that G

p1,m1=⇒ H1 and G
p2,m2=⇒ H2 are

parallel independent.
In any case of independence, there is a

parallel (typed) graph transformation G ⇒
G′ via the parallel (typed) graph production
p1 + p2, which is the disjoint union of the
(typed) graph productions p1 and p2. Vice
versa, the parallel (typed) graph transforma-
tion G ⇒ G′ can be sequentialized both ways.

H1 H2

G

G′

p1,m1

p1+p2,m

p2,m2

p2,m′
2 p1,m′

1

Example 5. We apply the typed graph production setF lag twice to the start
graph S, first with the match m, and the second time with a different match m′

134 U. Prange and H. Ehrig

PRP

T
start

non−active

start

non−active

PRP

T

F1

setTurn

active

start

non−active

PRP

T

F1

start

non−active

setTurn

active

PRP

T

F1

F1

setTurn

active

setTurn

active

setF lag,m1

setF lag,m2

setF lag,m′
2

setF lag,m′
1

setF lag+setF lag,m

Fig. 10. Example Local Church-Rosser and Parallelism Theorem

that maps the process node in L to the other process node in S. These two direct
typed graph transformations are parallel independent: in the intersection of the
matches, there is only the resource node, which is a gluing point with respect
to both transformations. Applying the Local Church–Rosser and Parallelism
Theorem, we can apply setF lag again switching the matches leading to the
same typed graph, as well as it is possible to apply setF lag + setF lag directly
to S with the same result as shown in Fig. 10. �

From Algebraic Graph Transformation to Adhesive HLR Categories 135

Concurrency Theorem

In contrast to the Local Church–Rosser Theorem, the Concurrency Theorem is
concerned with the execution of (typed) graph transformations which may be
sequentially dependent. This means that, in general, we cannot commute sub-
sequent direct (typed) graph transformations, as done for independent trans-
formations in the Local Church–Rosser Theorem, nor are we able to apply
the corresponding productions in parallel, as done in the Parallelism Theorem.
Nevertheless, it is possible to apply both transformations concurrently using
a so-called E-concurrent (typed) graph production p1 ∗E p2. Given an arbi-
trary sequence G

p1,m1=⇒ H
p2,m2=⇒ G′ of direct (typed) graph transformations,

it is possible to construct an E-concurrent (typed) graph production p1 ∗E p2.
The “epimorphic overlap graph” E can be constructed as a subgraph of H from
E = n1(R1) ∪ m2(L2), where n1 and m2 are the first comatch and the second
match, and R1 and L2 are the right- and the left-hand side of p1 and p2, re-
spectively. Note that the restrictions e1 : R1 → E of n1 and e2 : L2 → E of
m2 are jointly surjective. The E-concurrent (typed) graph production p1 ∗E p2

allows one to construct a direct (typed) graph transformation G
p1∗Ep2=⇒ G′

from G to G′ via p1 ∗E p2. Vice versa, each direct (typed) graph transfor-
mation G

p1∗Ep2=⇒ G′ via the E-concurrent (typed) graph production p1 ∗E p2
can be sequentialized, leading to an E-related (typed) graph transformation
sequence G

p1,m1=⇒ H
p2,m2=⇒ G′ of direct (typed) graph transformations via p1

and p2, where “E-related” means that n1 and m2 overlap in H as required
by E.

Theorem 2 (Concurrency Theorem). Given two (typed) graph productions
p1 and p2, and an E-concurrent (typed) graph production p1 ∗E p2, we have:

– Given an E-related (typed) graph transformation sequence G ⇒ H ⇒ G′ via
p1 and p2, then there is a synthesis construction leading to a direct (typed)
graph transformation G ⇒ G′ via p1 ∗E p2.

– Given a direct (typed) graph transforma-
tion G ⇒ G′ via p1 ∗E p2, then there is
an analysis construction leading to an
E-related (typed) graph transformation
sequence G ⇒ H ⇒ G′ via p1 and p2.

H2

G G′p1∗Ep2,m

p1,m1 p2,m2

Example 6. The first two steps S ⇒ G1 ⇒ G2 of the typed graph transforma-
tions in Fig. 7 are sequentially dependent, because the setTurn-loop needed to
apply the typed graph production setTurn1 to G1 is created by setF lag. The
E-concurrent production for this transformation sequence is shown in the top
row of Fig. 11, leading to the depicted E-related typed graph transformation. �

136 U. Prange and H. Ehrig

P

RP T

start

non−active

non−active

P

RP T

non−active

P

RP T

F1

check

active

non−active

P

RP T

start

non−active

start

non−active

P

RP T

start

non−active

P

RP T

F1

check

active

start

non−active

setF lag ∗E setTurn1

2

1

2

1

2

1

S G2

Fig. 11. Example Concurrency Theorem

Embedding and Extension Theorem

For the Embedding and Extension Theorem, we analyze under what conditions
a (typed) graph transformation t : G0

∗⇒ Gn can be extended to a (typed)

graph transformation t′ : G′
0

∗⇒ G′
n via an extension

morphism k0 : G0 → G′
0. The idea is to obtain an ex-

tension diagram (1), where the same (typed) graph
productions p1, . . . , pn are applied in the same order
in t and t′.

Unfortunately, this is not always possible, but we

G0 Gn

G′
0 G′

n

t ∗

t′ ∗
k0 kn(1)

are able to give a necessary and sufficient consistency condition to allow such an
extension. This result is important for all kinds of applications where we have
a large (typed) graph G′

0, but only small subparts of G′
0 have to be changed by

the (typed) graph productions p1, . . . , pn. In this case we choose a suitably small
subgraph G0 of G′

0 and construct a (typed) graph transformation t : G0
∗⇒ Gn

via p1, . . . , pn first. In a second step, we extend t : G0
∗⇒ Gn via the inclusion

k0 : G0 → G′
0 to a (typed) graph transformation t′ : G′

0
∗⇒ G′

n via the same
(typed) graph productions p1, . . . , pn.

From Algebraic Graph Transformation to Adhesive HLR Categories 137

Now we are going to formulate the consistency condition which allows us to
extend t : G0

∗⇒ Gn to t′ : G′
0

∗⇒ G′
n via k0 : G0 → G′

0, leading to the extension
diagram (1) above. The idea is to first construct
a boundary graph B and a context graph C for
k0 : G0 → G′

0, such that G′
0 is the gluing of G0

and C along B, i.e. G′
0 = G0 +B C. In fact, this

boundary graph B is the smallest subgraph of G0
which contains the identification points IP and the

B G0

C G′
0

k0(1)

dangling points DP of k0 : G0 → G′
0, considered as a match morphism. Now the

(typed) graph morphism k0 : G0 → G′
0 is said to be consistent with t : G0

∗⇒ Gn

if the boundary graph B is preserved by t. This means that none of the (typed)
graph production p1, . . . , pn deletes any item of B.

Theorem 3 (Embedding and Extension Theorem). Given a (typed) graph
transformation t : G0

∗⇒ Gn and a (typed) graph morphism k0 : G0 → G′
0 which

is consistent with respect to t, then there is an extension diagram over t and k0.
Given a (typed) graph transformation t : G0

∗⇒ Gn with an extension diagram
(1), and the boundary B and the context graph C of k0 : G0 → G′

0, then we
have:

1. k0 is consistent with respect to t : G0
∗⇒ Gn.

2. There is a (typed) graph production der(t) = (G0
d0← Dn

dn→ Gn), called the
derived span of t : G0

∗⇒ Gn, leading to a direct (typed) graph transformation
G′

0 ⇒ G′
n via der(t).

3. G′
n is the gluing of C and Gn along B, i.e. G′

n = Gn +B C.

Example 7. We embed the start graph S, with the typed graph morphism k0, into
a larger context graph H , where an additional resource is available that is also as-
signed to the first process. The boundary B and context graph C for k0 are shown
in the left-hand side of Fig. 12. Since, in the boundary graph, there is only the first
process node, which is preserved by every step of the typed graph transformation
t : S

∗⇒ G, we can extend t over k0 to H and obtain a typed graph transformation
t′ : H

∗⇒ H ′ shown in Fig. 12. Note that H ′ is the gluing of C and G along B. �

Critical Pairs and Local Confluence Theorem

A (typed) graph transformation system is called confluent if, for all (typed) graph
transformations G

∗⇒ H1 and G
∗⇒ H2, there is a (typed) graph X together with

H1 H2

G

X

∗ ∗

∗ ∗
H1 H2

G

X

p1,m1 p2,m2

∗ ∗

138 U. Prange and H. Ehrig

P

P

RT

P

RP T

start

non−active

start

non−active

P

RP T

T R

start

non−active

start

non−active

P

RP

T

F1

start

non−active

setTurn

active

P

RP

T

F1

T R

start

non−active

setTurn

active

1

2

1

2

1

1

2

1

2

1

t

t′

k0

S G

H ′H

B

C

Fig. 12. Example Embedding and Extension Theorem

(typed) graph transformations H1
∗⇒ X and H2

∗⇒ X . Local confluence means
that this property holds for all pairs of direct (typed) graph transformations
G ⇒ H1 and G ⇒ H2.

Confluence is an important property of a (typed) graph transformation sys-
tem, because, in spite of local nondeterminism concerning the application of
a (typed) graph production, we have global determinism for confluent (typed)
graph transformation systems. Global determinism means that, for each pair of
terminating (typed) graph transformations G

∗⇒ H and G
∗⇒ H ′ with the same

source graph, the target graphs H and H ′ are equal or isomorphic. A (typed)
graph transformation G

∗⇒ H is called terminating if no (typed) graph produc-
tion in the (typed) graph transformation system is applicable to H anymore.

The Local Church–Rosser Theorem shows that, for two parallel independent
direct (typed) graph transformations G

p1,m1=⇒ H1 and G
p2,m2=⇒ H2, there is a

(typed) graph G′ together with direct (typed) graph transformations H1
p2,m′

2=⇒ G′

and H2
p1,m′

1=⇒ G′. This means that we can apply the (typed) graph productions
p1 and p2 with given matches in an arbitrary order. If each pair of productions

From Algebraic Graph Transformation to Adhesive HLR Categories 139

is parallel independent for all possible matches, then it can be shown that the
corresponding (typed) graph transformation system is confluent.

In the following, we discuss local confluence for the general case in which
G ⇒ H1 and G ⇒ H2 are not necessarily parallel independent. According to a
general result for rewriting systems, it is sufficient to consider local confluence,
provided that the (typed) graph transformation system is terminating.

The main idea is to study critical pairs. A pair P1
p1,o1⇐= K

p2,o2=⇒ P2 of direct
(typed) graph transformations is called a critical pair if it is parallel dependent,
and minimal in the sense that the pair (o1, o2) of matches o1 : L1 → K and
o2 : L2 → K is jointly surjective. This means that each item in K has a preimage
in L1 or L2. In other words, K can be considered as a suitable gluing of L1 and
L2. It can be shown that every pair of parallel dependent direct (typed) graph
transformations is an extension of a critical pair.

In order to show local confluence, it is sufficient to show strict confluence
of all its critical pairs. As discussed above, confluence of a critical pair P1 ⇐
K ⇒ P2 means the existence of a (typed) graph K ′ together with (typed) graph
transformations P1

∗⇒ K ′ and P2
∗⇒ K ′.

Strictness is a technical condition which means, intuitively, that the largest
subgraph N of K which is preserved by the critical pair P1 ⇐ K ⇒ P2 is also
preserved by P1

∗⇒ K ′ and P2
∗⇒ K ′. In [10], it has been shown that confluence

of critical pairs without strictness is not sufficient to show local confluence.

Theorem 4 (Local Confluence Theorem). A (typed) graph transformation
system is locally confluent if all its critical pairs are strictly confluent.

Example 8. We analyze our typed graph grammar MutualExclusion and take a
closer look at the typed graph productions setF lag and setTurn1. For a typed
graph K that may lead to a critical pair, we have to consider overlappings
of the left-hand sides L1 of setF lag and L2 of setTurn1. The typed graph
transformations K

setF lag
=⇒ P1 and K

setTurn1=⇒ P2 are parallel dependent if the
loop in L2 typed non-active is deleted by setF lag. This leads to the two critical
overlappings K and K ′, and we have the critical pairs P1

setF lag⇐= K
setTurn1=⇒ P2

and P ′
1

setF lag⇐= K ′ setTurn1=⇒ P ′
2 shown in Fig. 13.

There are many more critical pairs for other pairs of typed graph transforma-
tions in our grammar. All these critical pairs are strictly confluent. Therefore the
typed graph transformation system is locally confluent. However, as we can see in
the derivation graph, the typed graph grammar is not terminating; nevertheless,
it is confluent. �

Graph Constraints and Application Conditions

(Typed) graph constraints allow us to formulate properties for (typed) graphs.
In particular, we are able to formulate the condition that a (typed) graph G must
(or must not) contain a certain subgraph G′. Beyond that, we can require that
G contains C (conclusion) if it contains P (premise). Application conditions,

140 U. Prange and H. Ehrig

similarly to the gluing condition, allow us to restrict the application of (typed)
graph productions. Both concepts are important for increasing the expressive
power of (typed) graph transformation systems.

Definition 6 (Graph constraint). An atomic (typed) graph constraint is of
the form PC(a), where a : P → C is a (typed) graph morphism.

A (typed) graph constraint is a Boolean formula
over atomic (typed) graph constraints. This means
that true and every atomic (typed) graph constraint
are (typed) graph constraints, and, for (typed) graph
constraints c and ci with i ∈ I for some index set I,
¬c, ∧i∈Ici, and ∨i∈Ici are (typed) graph constraints.

p

P C

G

a

p q
=

A (typed) graph G satisfies a (typed) graph constraint c, written G |= c, if

– c = true;
– c = PC(a) and, for every injective (typed) graph morphism p : P → G, there

exists an injective (typed) graph morphism q : C → G such that q ◦ a = p;
– c = ¬c′ and G does not satisfy c′;
– c = ∧i∈Ici and G satisfies all ci with i ∈ I;
– c = ∨i∈Ici and G satisfies some ci with i ∈ I.

Now we introduce application conditions for a match m : L → G, where L is
the left-hand side of a (typed) graph production p. The idea is that the (typed)
graph production cannot be applied at m if m violates the application condition.

P RT

P F1

setTurn

setTurn

active

P

RP T

start

non−active

setTurn

P

RP T

start

non−active

check
setF lag setTurn1

P1 K P2

P

R

RT

P F1

setTurn

setTurn

active

P R

RP T

start

non−active

setTurn

P R

RP T

start

non−active

check
setF lag setTurn1

P ′
1 K′ P ′

2

Fig. 13. Example critical pairs

From Algebraic Graph Transformation to Adhesive HLR Categories 141

Definition 7 (Application condition). An atomic application condition over
a (typed) graph L is of the form P (x, ∨i∈Ixi), where x : L → X and xi : X → Ci

with i ∈ I for some index set I are (typed) graph morphisms.

An application condition over L is a
Boolean formula over atomic application
conditions over L. This means that true
and every atomic application condition
are application conditions, and, for ap-
plication conditions acc and acci with

L X Ci

G

x ci

m p qi

= =

i ∈ I, ¬acc, ∧i∈Iacci, and ∨i∈Iacci are application conditions.
A (typed) graph morphism m : L → G satisfies an application condition acc,

written m |= acc, if

– acc = true;
– acc = P (x, ∨i∈Ixi) and, for all injective (typed) graph morphisms p : X → G

with p◦x = m, there exists an i ∈ I and an injective (typed) graph morphism
qi : Ci → G with qi ◦ xi = p;

– acc = ¬acc′ and m does not satisfy acc′;
– acc = ∧i∈Iacci and m satisfies all acci with i ∈ I;
– acc = ∨i∈Iacci and m satisfies some acci with i ∈ I.

Given a (typed) graph production p = (L l← K
r→ R), an application condition

A(p) = (AL, AR) for p consists of a left application condition AL over L and a
right application condition AR over R. A direct (typed) graph transformation
G

p,m⇒ H with a comatch n : R → H satisfies the application condition A(p) =
(AL, AR) if m |= AL and n |= AR. Otherwise, p cannot be applied to G via m.

A widely used variant of application conditions are negative application condi-
tions. A negative application condition is of the form NAC(x), where x : L → X
is a (typed) graph morphism. A (typed) graph morphism m : L → G satisfies
NAC(x) if there does not exist an injective (typed) graph morphism p : X → G
with p ◦ x = m. A negative application condition NAC(x) is equivalent to an
application condition of the form P (x, ∨i∈Ixi) with an empty index set I.

Example 9. We consider the typed graph constraint PC(a : P → C) in Fig. 14
for the typed graphs of the graph grammar MutualExclusion. A typed graph G
satisfies this constraint if, for each resource node R, there is a turn variable that
connects it to a process. The start graph S obviously satisfies this constraint –
there is only one resource, which is connected to the first process node.

For an example of an application condition, we add a new production
addResource to our typed graph grammar MutualExclusion, as shown in
Fig. 15. This production inserts a new resource node and a new turn node,
connected to a given process. For the application of this production, we de-
fine the left negative application condition NAC(x) as depicted. With NAC(x),
we forbid the possibility that the process that the turn will be connected to is
already active. �

142 U. Prange and H. Ehrig

R P RT
a

P C

Fig. 14. Example typed graph constraint

It is possible to construct for each (typed) graph constraint an equivalent right
application condition and for each right application condition an equivalent left
application condition. This allows us to make sure that a derived (typed) graph
H satisfies a given (typed) graph constraint PC(a), provided that the match
m : L → G of the direct (typed) graph transformation G

p,m
=⇒ H satisfies the

corresponding left application condition acc.

3 Transformations in Adhesive HLR Systems

In this section, we generalize the basic concepts of the algebraic approach from
graphs in Section 2 to high-level structures. The concept of weak adhesive high-
level replacement (HLR) categories is introduced as a suitable categorical frame-
work for graph transformation in this more general sense.

In addition to pushouts we also need pullbacks.
The intuitive idea of a pullback G0 of injective mor-
phisms f1 : G1 → G3 and f1 : G2 → G3 is that
G0 is the intersection of G1 and G2 with injective
morphisms g1 : G0 → G1 and g2 : G0 → G2 leading
to the commutative diagram (1).

If f1 is an inclusion and f2 an arbitrary morphism

G0 G1

G2 G3

g1

f2

g2 f1(1)

then G0 can be considered as the preimage f−1
2 (G1).

The intuitive idea of weak adhesive HLR categories is that of categories with
suitable pushouts and pullbacks which are compatible with each other. More
precisely, the definition is based on van Kampen squares.

The idea of a van Kampen (VK) square is that of a pushout which is sta-
ble under pullbacks, and, vice versa, that pullbacks are stable under combined
pushouts and pullbacks.

Definition 8 (Van Kampen square). A pushout (1) is a van Kampen square
if, for any commutative cube (2) with (1) in the bottom and where the back faces
are pullbacks, the following statement holds: the top face is a pushout iff the front
faces are pullbacks.

It might be expected that, at least in the category Sets, every pushout is a
van Kampen square. Unfortunately, this is not true. However, at least pushouts
along injective functions or monomorphisms are VK squares in Sets and several
other categories.

From Algebraic Graph Transformation to Adhesive HLR Categories 143

A′

B′

A

B

C ′

D′

C

D

A B

C D

m′

a

f ′

g′

b
m

f

n′

c

d

n
g

m

f

n

g(1)

(2)

P P P P RT

active

x

NAC L K R

Fig. 15. Example negative application condition

Definition 9 (Weak adhesive HLR category). A category C with a mor-
phism class M is called a weak adhesive HLR category if:

1. M is a class of monomorphisms closed under isomorphisms, composition
(f : A → B ∈ M, g : B → C ∈ M ⇒ g ◦ f ∈ M), and decomposition
(g ◦ f ∈ M, g ∈ M ⇒ f ∈ M).

2. C has pushouts and pullbacks along M-morphisms, and M-morphisms are
closed under pushouts and pullbacks.

3. Pushouts in C along M-morphisms are weak VK squares, i.e. the VK square
property holds for all commutative cubes with m ∈ M and (f ∈ M or
b, c, d ∈ M).

For historical reasons, these categories are called weak adhesive HLR categories.
In [11] and related work, adhesive categories are used as the categorical frame-
work for deriving process congruences from reaction rules. The step from adhe-
sive to adhesive HLR categories is justified by the fact that there are some
important examples – such as algebraic specifications and typed attributed
graphs – which are not adhesive categories. However, they are adhesive HLR
categories for a suitable subclass M of all monomorphisms. Thus, the main dif-
ference between adhesive HLR categories and adhesive categories is that a distin-
guished class M of monomorphisms is considered instead of all monomorphisms,
so that only pushouts along M-morphisms have to be VK squares. Another im-
portant example – the category PTNets of place/transition nets with the class
M of injective morphisms – fails to be an adhesive HLR category, but is a weak
adhesive HLR category. This justifies the step to weak adhesive HLR categories.

144 U. Prange and H. Ehrig

Weak adhesive HLR categories are closed under product, slice, coslice, functor,
and comma category constructions. This means that we can construct new weak
adhesive HLR categories from given ones.

Theorem 5 (Construction Theorem). If (C, M1) and (D, M2) are weak
adhesive HLR categories, then the following categories are weak adhesive HLR
categories:

1. the product category (C × D, M1 × M2),
2. the slice category (C\X, M1 ∩ C\X),
3. the coslice category (X\C, M1 ∩ X\C),
4. the functor category ([X,C], M − functor transformations),
5. the comma category (ComCat(F, G; I), (M1 × M2) ∩ MorComCat), where

F : C → X preserves pushouts along M1-morphisms and G : D → X
preserves pullbacks (along M2-morphisms).

Examples for weak adhesive HLR categories are the categories Sets of sets,
Graphs of graphs, GraphsTG of typed graphs, Hypergraphs of hypergraphs,
ElemNets of elementary Petri nets, PTNets of place/transition nets and
AHLNets of algebraic high-level nets, all together with the class M of in-
jective morphisms, as well as the category Spec of algebraic specifications with
the class Mstrict of strict injective specification morphisms and the category
AGraphsATG of typed attributed graph with the class MD−iso of injective
graph morphisms with isomorphic data part. After proving that Sets is a weak
adhesive HLR category, the proofs for most of these categories can be done using
the Construction Theorem.

Analogously to the (typed) graph case, we can define productions, transfor-
mations, and adhesive HLR systems and grammars, where we replace injective
morphisms by M-morphisms.

Definition 10 (Adhesive HLR system and grammar). A production p =
(L l← K

r→ R) consists of objects L, K, and R, and two morphisms l and r with
l, r ∈ M.

Given a production p, an object G,
and a morphism m : L → G, called
match, a direct transformation G

p,m
=⇒ H

from G to an object H is given by the
pushouts (1) and (2).

L K R

G D H

l r

f g

m k n(1) (2)

An adhesive HLR system AS = (C, M, P) consists of a weak adhesive HLR
category (C, M) and a set of productions P .

An adhesive HLR grammar AG = (AS, S) consists of an adhesive HLR system
AS and a start object S.

The language L of an adhesive HLR grammar AG is defined by

L = {G | ∃ transformation S
∗⇒ G}.

From Algebraic Graph Transformation to Adhesive HLR Categories 145

Under a few additional conditions, it has been shown in [7] that all the results
for (typed) graph transformations given in Subsection 2.2 are valid in adhesive
HLR systems. Hence they can be applied to all the examples of weak adhesive
HLR categories discussed above.

4 Conclusion

In this paper, we have given an overview of several concepts and results of
algebraic graph transformation based on gluing constructions and the double
pushout approach. Basic results concerning independence, parallelism, concur-
rency, embedding, critical pairs and confluence have been introduced and ex-
plained by examples.

As a generalization, we have defined the categorical framework of adhesive
high-level replacement systems for unified constructions and proofs, which allows
to instantiate the rich theory not only to graphs and typed graphs, but also
to many different high-level structures. As a consequence we obtain a rigorous
approach to various transformation systems providing as fundamental results the
Local Church-Rosser and Parallelism, Concurrency, Embedding and Extension,
and the Local Confluence Theorems.

For a detailed presentation of all the concepts, results and proofs we refer to
our book [7].

References

[1] Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Trans-
formation, Foundations, vol. 1. World Scientific, Singapore (1997)

[2] Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.: Handbook of Graph Gram-
mars and Computing by Graph Transformation, Applications, Languages and
Tools, vol. 2. World Scientific, Singapore (1999)

[3] Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G.: Handbook of Graph
Grammars and Computing by Graph Transformation, Concurrency, Parallelism
and Distribution, vol. 3. World Scientific, Singapore (1999)

[4] Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: From Graph Grammars
to High Level Replacement Systems. In: Ehrig, H., Kreowski, H.-J., Rozenberg,
G. (eds.) Graph Grammars and Their Application to Computer Science. LNCS,
vol. 532, pp. 269–291. Springer, Heidelberg (1991)

[5] Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: Parallelism and Con-
currency in High-Level Replacement Systems. MSCS 1(3), 361–404 (1991)

[6] Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive High-Level Replacement
Categories and Systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004)

[7] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

[8] Lack, S., Sobociński, P.: Adhesive Categories. In: Walukiewicz, I. (ed.) FOSSACS
2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)

146 U. Prange and H. Ehrig

[9] Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Mateo, CA (1996)
[10] Plump, D.: On Termination of Graph Rewriting. In: Nagl, M. (ed.) WG 1995.

LNCS, vol. 1017, pp. 88–100. Springer, Heidelberg (1995)
[11] Sobociński, P.: Deriving Process Congruences from Reaction Rules. PhD thesis,

BRICS (2004)

Deterministic Two-Dimensional Languages over

One-Letter Alphabet�

Marcella Anselmo1 and Maria Madonia2

1 Dipartimento di Informatica ed Applicazioni, Università di Salerno I-84084 Fisciano
(SA) Italy

anselmo@dia.unisa.it
2 Dip. Matematica e Informatica, Università di Catania, Viale Andrea Doria 6/a,

95125 Catania, Italy
madonia@dmi.unict.it

Abstract. We study the family DREC(1) of deterministic tiling recog-
nizable two-dimensional languages in the case of a one-letter alphabet.
The family coincides with both the class of languages accepted by deter-
ministic on-line tessellation acceptors (L(DOTA)(1)) and the one of lan-
guages recognized by 2-way alternating finite automata (L(2AFA)(1)).
We show that DREC(1) is complex enough to contain languages that can-
not be realized by classical operations, while other languages constructed
using classical operations cannot be deterministically recognized. Fur-
thermore we prove that there are unambiguously recognizable languages
that cannot be deterministically recognized even in the case of one-letter
alphabet. In particular L(DOTA)(1) is different from L(OTA)(1) (its
non-deterministic counterpart).

Keywords: Automata and Formal Languages. Determinism. Two-
dimensional languages.

1 Introduction

Two-dimensional languages, or picture languages, are a generalization of the
classical string languages: they are sets of two-dimensional arrays of symbols
over a finite alphabet. In the literature many different classes of picture langua-
ges have been considered and such classes are interesting as formal methods of
image recognition as well as mathematical objects in their own right. In partic-
ular, the class of two-dimensional languages defined by finite state devices was
deeply studied and in [9] the family REC(Σ) of recognizable picture languages
was introduced as a generalization of the class of recognizable string languages.
This definition follows from a characterization of recognizable string languages
in terms of local languages and projections (cf. [6]): the pair of a local picture
language and a projection is called tiling system.

� This work was partially supported by PRIN project Linguaggi Formali e Automi:
aspetti matematici e applicativi.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 147–159, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

148 M. Anselmo and M. Madonia

It is also noteworthy that the definition of REC(Σ) is implicitly non-
deterministic and it seems not possible to eliminate this non-determinism without
a loss in power of recognition: any deterministic finite model for two-dimensional
languages defines a class that is strictly included in REC(Σ) (see e.g. [5,11,21]).
This result fits the fact that REC family is not closed under complementation
whereas any deterministic family must have this closure property.

On the other hand deterministic languages play an important role in the
recognition process of pictures. Indeed the parsing problem for two-dimensional
languages in REC(Σ) is a NP-complete problem [16]. In order to decide whether
a given picture p belongs to the language recognized by a given tiling system we
have to scan p in order to find a picture p′, in the local language, whose pro-
jection is equal to p. In general, such recognition process is non-deterministic:
at each step, one can have a backtracking on all already scanned positions. So
it is important to have tiling systems that lead to computations with no back-
tracking. After this, deterministic tiling systems were recently defined in [1],
and the given definition generalizes the one-dimensional (string) case. Indeed a
tiling system corresponds, in one dimension, to a set of undirected transitions.
To consider determinism we have to fix a computation direction. Remark that
determinism, also in the one dimensional case, is a notion related to a fixed
direction (usually understood): we have determinism, along the left-to-right di-
rection, and co-determinism, along the right-to-left direction. In two dimensions
this reasoning leads to define determinism along four main directions, each one
starting in one of the four corners. Deterministic languages are defined as lan-
guages that can be recognized by a tiling system that is deterministic according
to some corner-to-corner direction. The class of deterministic languages over an
alphabet Σ is denoted DREC(Σ). Once again, the generalization from one to
two dimensions, results in a more complex notion.

In this paper we study deterministic languages over a one-letter alphabet,
whose class is denoted DREC(1). Note that the investigation on one-letter al-
phabet is a necessary step in studying recognizability: if a language belongs to
REC(Σ) then necessarily its projection over a one-letter alphabet must belong
to REC(1). Considering a one-letter alphabet is equivalent to study the shapes
of pictures before their contents.

The tiling recognizability of unary languages has been considered in [7,9].
More precisely there are considered languages of pictures where the number of
columns is a function of the number of rows (or vice-versa) and it is shown that
such functions cannot grow quicker than an exponential function or slower than
a logarithmic one. Regular expressions for languages over one-letter alphabet
are studied in [19,2]. Some comparisons between the different kind of automata
accepting two-dimensional languages, in the special case of a one-letter alphabet,
are contained in [11,12,18,17]. In general, the same separation results hold in the
one-letter case as in the several-letters case. Very recently the authors of [4]
investigated the complexity of unary tiling-recognizable picture languages.

This paper mainly focuses on DREC(1) family, but it concerns other fam-
ilies of unary languages too. First it is shown (Proposition 2) that DREC(1)

Deterministic Two-Dimensional Languages over One-Letter Alphabet 149

coincides with both L(DOTA)(1), the family of languages accepted by deter-
ministic on-line tessellation acceptors, and L(2AFA)(1), the class of languages
accepted by 2-way alternating finite automata: when the cardinality of the al-
phabet is 1, these three approaches are equivalent. Hence any result stated for
one of these families immediately holds for the other two ones too. Then we prove
a necessary condition for languages in DREC(1) expressing some periodicity in
the local language corresponding to a deterministic tiling system (Proposition
3). As application, we provide an example of a language Lmult not in DREC(1)
(Proposition 4), carefully analyzing its local pictures.

Proposition 4 has several applications. It allows us to show that in the one-
letter case: 1) there are unambiguously but not deterministically recognizable
languages (Proposition 5); 2) there exist languages accepted by on-line tesse-
lation acceptors (OTA), but not by deterministic on-line tesselation acceptors
(DOTA) (Corollary 3); 3) DREC(1) (and hence L(DOTA)(1), and L(2AFA)(1)
too) is not closed under row and column star operations (Proposition 6).

In Section 5 we compare DREC(1) with some other families of one-letter lan-
guages defined using boolean operations, row-, column-, diagonal-concatenations
and stars. We show that the structure of DREC(1) cannot be captured by such
operations: there are languages in DREC(1) that cannot be expressed using
union, concatenations and stars and there are languages constructed with these
operations that are not in DREC(1). Recall that this is also the case for the whole
REC(Σ): the only known characterization needs also some alphabetic projection
[9]. Finally in Section 6 we state some open problems.

2 Preliminaries

We introduce some definitions about two-dimensional languages. The notations
used, some examples and results and more details can be mainly found in [9].

A two-dimensional string (or a picture) over a finite alphabet Σ is a two-
dimensional rectangular array of elements of Σ. The set of all pictures over Σ is
denoted by Σ∗∗ and a two-dimensional language over Σ is a subset of Σ∗∗. Given
a picture p ∈ Σ∗∗, let �1(p) = m, the number of rows and �2(p) = n the number
of columns; the pair (m, n) is the size of p. Note that when a one-letter alphabet
is concerned, a picture p is totally defined by its size (m, n), and we will write
p = (m, n). Unlike the one-dimensional case, we can define an infinite number
of empty pictures, namely all the pictures of size (m, 0) and of size (0, n), for
all m, n ≥ 0, that we denote by λm,0 and λ0,n respectively. For any picture p of
size (m, n), we consider the bordered picture p̂ of size (m + 2, n + 2) obtained by
surrounding p with a special boundary symbol # �∈ Σ.

A tile is a picture of size (2, 2) and B2,2(p) is the set of all sub-pictures of
size (2, 2) of a picture p. Given an alphabet Γ , a two-dimensional language
L ⊆ Γ ∗∗ is local if there exists a finite set Θ of tiles over Γ ∪ {#} such that
L = {p ∈ Γ ∗∗|B2,2(p̂) ⊆ Θ} and we will write L = L(Θ).

A tiling system is a quadruple (Σ, Γ, Θ, π) where Σ and Γ are finite alpha-
bets, Θ is a finite set of tiles over Γ ∪ {#} and π : Γ → Σ is a projection.

150 M. Anselmo and M. Madonia

A two-dimensional language L ⊆ Σ∗∗ is tiling recognizable if there exists a tiling
system (Σ, Γ, Θ, π) such that L = π(L(Θ)) (extending π in the usual way). We
denote by REC(Σ) the family of all tiling recognizable picture languages over Σ.
Note that when a unary alphabet is considered a tiling system can be specified
by giving only the local alphabet and the set of tiles; we will write (Γ, Θ).

Furthermore, in this paper, for any family of languages F(Σ) over an alphabet
Σ, we denote by F(1) the corresponding family over a one-letter alphabet.

Example 1. Consider the language Lm,m = {(m, m) | m ≥ 0} of square pictures
over a one-letter alphabet, say Σ = {a}, that is pictures with same number of
rows and columns. Lm,m belongs to REC(1). Indeed it can be obtained as projec-
tion of the language of squares over the alphabet {0, 1} in which all the symbols
in the main diagonal are 1, whereas the remaining positions carry symbol 0.

Let p and q be two pictures over an alphabet Σ. The column concatenation
of p and q (denoted by p �q) and the row concatenation of p and q (denoted by
p �q) are partial operations, defined only if �1(p) = �1(q) and if �2(p) = �2(q),
respectively and are given by:

p �q = p q p �q =
p
q

.

Only in the case of one-letter alphabet, one can also define the diagonal con-
catenation [2]. The diagonal concatenation of p = (m, n) and q = (m′, n′) is the
picture p �\ q = (m + m′, n + n′). It can be represented by

p �\ q =
p

q

The definitions of picture concatenations can be extended to languages. By iter-
ating these operations, one can define the row-, column- and diagonal- transitive
closures of languages, denoted by ∗ �, ∗ �, and ∗ �\ , respectively. REC(Σ) family
is closed under row and column concatenation and their closures, under union,
intersection and rotation; on the contrary it is not closed under complementation
(see [9]) even in the case of one-letter alphabet [20]. Further REC(1) is closed
under diagonal concatenation and its closure.

Example 2. Let L2m,2n be the language of pictures over a one-letter alphabet
with even dimensions, that is L2m,2n = {p |�1(p) = 2m, �2(p) = 2n, m, n ≥ 0}.
We have that L2m,2n = {{(2, 2)}∗ �}∗ �

, and also L2m,2n = {λ0,2}∗
�\ �\ {λ2,0}∗

�\ .

Example 3. Let Lfc=lc be the language of pictures over Σ = {a, b} whose first
column is equal to the last one. Language Lfc=lc ∈ REC(Σ). Informally we
can define a local language where information about first column symbols of a
picture p is brought along horizontal direction, by means of subscripts, to match
the last column of p (see [3]).

Consider also the language Lfc=c′ of pictures where the first column is equal
to some i-th column, i �= 1. Note that Lfc=c′ = Lfc=lc

�Σ∗∗ and thus Lfc=c′ ∈
REC(Σ). Similarly Lc′=lc = Σ∗∗ �Lfc=lc and Lfc=c′ ∩Lc′=lc are all in REC(Σ).

Deterministic Two-Dimensional Languages over One-Letter Alphabet 151

Two-dimensional on-line tessellation acceptors (OTA) were introduced in [11].
A run of a OTA on a picture consists in associating a state to each position
of the picture. Such state for some position (i, j) is given by the transition
function and depends on the symbol in that position and on the states already
associated to positions (i, j−1), (i−1, j−1) and (i−1, j) (note that an equivalent
definition is possible with the state not depending on the state in the top-left
corner, (i − 1, j − 1) [9]). A deterministic version of this model is obtained,
as usual, requiring that the state associated by the transition function to any
position is unique; a deterministic OTA is referred to as DOTA. We have that
the family of two-dimensional languages recognized by a DOTA (L(DOTA)(Σ))
is strictly included in the family of two-dimensional languages recognized by a
OTA (L(OTA)(Σ)). Moreover, despite this kind of automaton is quite difficult to
manage, this is actually the machine counterpart of a tiling system: REC(Σ) =
L(OTA)(Σ) [14].

Another model of automaton recognizing two-dimensional languages is the
4-way automaton (4NFA or 4DFA for the deterministic version): a four-way
automaton is defined as an extension of the two-way automaton that recognizes
strings (cf. [5]) by allowing it to move in four directions: Left, Right, Up, Down.
A 2NFA is a 4NFA that can move right and down only.

An alternating finite automaton (AFA) [15] is a generalization of a finite
automaton where a state can be either existential or universal. A computation
that meets a universal (existential, resp.) state accepts if every (at least one,
resp.) path from that state is accepting. A two-way two-dimensional alternating
automaton (here denoted 2AFA) is an AFA that can move right and down only.

3 Deterministic Recognizable Languages

Very recently the definition of deterministic tiling systems and deterministic
languages was introduced and discussed [1].

Deterministic recognizable languages are defined according to one of the four
corner-to-corner directions: from top-left corner towards the bottom-right one
(tl2br for short), and all the others corner-to-corner directions in the set C2C =
{tl2br, tr2bl, bl2tr, br2tl}. A tiling system (Σ, Γ, Θ, π) is tl2br-deterministic if for

any γ1, γ2, γ3 ∈ Γ ∪ {#} and σ ∈ Σ there is at most one tile
γ1 γ2

γ3 γ4
∈ Θ, with

π(γ4) = σ. Similarly d-deterministic tiling systems are defined, for any d ∈ C2C.
A recognizable two-dimensional language L is deterministic, if it is recognized
by a d-deterministic tiling system for some corner-to-corner direction d. More-
over, DREC(Σ) denotes the class of deterministic recognizable two-dimensional
languages over the alphabet Σ. According to our notation, DREC(1) will denote
the class of deterministic languages over a one-letter alphabet.

Example 4. The tiling system sketched in Example 1 for the language Lm,m

of square pictures is d-deterministic for d = tl2br, br2tl, but not for the other
directions. Anyway Lm,m ∈DREC(1).

152 M. Anselmo and M. Madonia

Example 5. Let Lfc=lc be the language of pictures over Σ = {a, b} whose first
column is equal to the last one, as defined in Example 3. The tiling system
described is d-deterministic for any d ∈ C2C and hence Lfc=lc ∈ DREC(Σ).

Now we study closure properties of DREC(Σ) under the boolean operations, in
order to compare the general alphabet case with the one-letter case.

Proposition 1. Let Σ be a finite alphabet. Then DREC(Σ) is closed under
complementation, but it is not closed under union and intersection.

Proof. The closure under complementation is in [1]. Let Lfc=c′ and Lc′=lc as
in Example 3. These languages are both in DREC(Σ), but their intersection is
not [1]. Hence DREC(Σ) is not closed under union (otherwise the closure under
union and complementation would yield the one under intersection).
�

4 Properties of DREC(1)

In this section we study some properties of the family DREC(1) of deterministic
recognizable two-dimensional languages over a one-letter alphabet. We state a
necessary condition for languages in DREC(1); it will provide an example of a
recognizable language that cannot be deterministically recognized. Such example
will bring to several important consequences.

In [1], DREC(Σ) is characterized as the closure by rotation of L(DOTA)(Σ).
When |Σ| = 1, the characterization can be strengthened as follows.

First remark that if L ∈DREC(1) then, for any d ∈ C2C, there exists a
d-deterministic tiling system recognizing L, as in the following example.

Example 6. The tiling system for language Lm,m of square pictures shown in
Example 1 is not tr2bl-deterministic, but we can obtain a tr2bl-deterministic
tiling system recognizing Lm,m, by replacing its tiles by their mirror images. This
way, the local image of a square is a square with symbol 1 on the counter-diagonal
and 0 elsewhere. The same holds for the other corner-to-corner directions.

Proposition 2. DREC(1)= L(DOTA)(1)= L(2AFA)(1).

Proof. L ∈ L(DOTA)(1) iff L is recognized by a tl2br-deterministic tiling system;
thus L(DOTA)(1)⊆DREC(1). Moreover, if L is recognized by a d-deterministic
tiling system for some d ∈ C2C then it is also recognized by a tl2br-deterministic
tiling system, constructed making some mirror image of the tiles, as in Example
6; thus DREC(1)= L(DOTA)(1). In [13] the authors show that a language is in
L(DOTA)(Σ) iff its 180◦ rotation is in L(2AFA)(Σ). But when |Σ| = 1 then
any language coincides with its 180◦ rotation.
�

Let us now state a necessary condition on the local language associated to a
language in DREC(1). It says that the (local) pictures with a same number m
of rows satisfy some ”periodicity” condition. Note that, in the general case of
a language L ∈REC(Σ), the Horizontal Iteration Lemma holds (cf. [9]): any

Deterministic Two-Dimensional Languages over One-Letter Alphabet 153

sufficiently long (local) picture with m rows has a factor that can be arbitrarily
repeated still remaining in L. In the case of L ∈DREC(1) the result is much
stronger: because of determinism, all (local) pictures with m rows in L can be
obtained (column) concatenating a fixed picture (xm) with some repetitions of
another picture (ym) (any local picture is the prefix of the longer ones). The result
is also strongly based on the cardinality 1 of the alphabet and it does not hold
in general (for example the local language for Lfc=lc on a two-letter alphabet as
in Example 3 does not satisfy this condition, even if it is tl2br-deterministic).

Let us write y′ ≺ y if y = y′ �y′′ for some y′′ ∈ Σ∗∗, say that y′ is a prefix of
y, and denote by Pref(L) = {y′ | y′ ≺ y for some y ∈ L}. Further we introduce
for any picture p of size (m, n), the half-bordered picture p̃ of size (m + 1, n + 1)
obtained by surrounding p with the boundary symbol only on its top and left
borders. We will denote by L̃(Θ) = {p ∈ Γ ∗∗|B2,2(p̃) ⊆ Θ} and L̃m(Θ) the set
of pictures in L̃(Θ) with m rows.

Proposition 3. Let L ∈ DREC(1) and (Γ, Θ) be a tl2br-deterministic tiling
system for L with |Γ | = γ.

For any m > 0, there exist xm, ym ∈ Γ ∗∗, with �2(xm), �2(ym) < γm, such
that ∀p ∈ L̃m(Θ), with �2(p) > γm, we have p ∈ Pref(xm

�(y∗ �

m)).
Moreover, if ∀m > 0, ȳm denotes some ym constructed as above with minimal

number of columns, then �2(ȳm+1) = c · �2(ȳm) for some c ∈ {1, 2, . . . , γ}.

Proof. Let m > 0: every picture in L̃m(Θ) can have at most γm distinct columns.
So, consider the picture p0 ∈ L̃m(Θ) with �2(p0) = γm + 1: in p0 there exist two
columns, say the i-th and the j-th ones, with i < j, that are equal. Clearly
1 ≤ i ≤ γm (such considerations are similar to the ones in the proof of the
Horizontal Iteration Lemma [9]). Set xm the picture of size (m, i − 1) such that
xm ≺ p0, and ym the picture of size (m, j − i) such that xm

�ym ≺ p0. Since
(Γ, Θ) is tl2br-deterministic, then for any picture p ∈ L̃m(Θ) with �2(p) > γm,
p0 ≺ p. So the i-th column of p is equal to its j-th one. Furthermore determinism
implies that also the (i+1)-th column of p is equal to the (j +1)-th one, and, in
general, the n-th column of p is equal to the (n + �2(ym))-th one, for any n > i.
Therefore we have p ∈ Pref(xm

�(y∗ �

m)).
Moreover, if we choose in p0 the indexes i and j such that (j − i) is minimal,

then in any p ∈ L̃m(Θ) with �2(p) > γm, there cannot exist two equal columns
at a distance less than j − i = �2(ym) (apply again the determinism).

Now, for any m > 0, let us choose ym and ym+1 with minimal number of
columns and denote them by ȳm and ȳm+1: we show that �2(ȳm+1) = c · �2(ȳm)
for some c ∈ {1, 2, . . . , γ}. Indeed, any q ∈ L̃m+1(Θ), with �2(q) > γm+1,
is in Pref(xm+1

�(ȳ∗ �

m+1)). By erasing the last row of q we obtain a picture
p ∈ L̃m(Θ), that is in Pref(xv

�(y∗ �

v)), with �2(ȳm+1) = �2(yv). On the other
hand, we have p ∈ Pref(xm

�(ȳ∗ �

m)). In such situation we have that necessar-
ily �2(ȳm+1) = �2(yv) is a multiple of �2(ȳm) by some factor c ∈ {1, 2, . . . , γ}.
Clearly, we cannot have �2(ȳm+1) < �2(ȳm). Moreover it cannot be �2(ȳm+1) ≡
h mod �2(ȳm), h �= 0. Otherwise, yv = y0

�. . . �y0
�y′

0 with y0 = y′
0

�y′′
0 and

�2(y′
0) = h. This would imply that in y0 the first column and the (h + 1)-th one

154 M. Anselmo and M. Madonia

are equal, against the minimality of �2(ȳm). At last, it cannot be �2(ȳm+1) =
k · �2(ȳm) with k > γ, otherwise yv = x0

�. . . �x0, k times, for some x0 with
�2(x0) = �2(ȳm). But, since below the first column of x0, in p, can occur at most
γ different symbols, this is against the minimality of �2(ȳm+1) = k · �2(x0).
�

The necessary condition just stated for the local language associated to a lan-
guage in DREC(1) has a weaker consequence on the language itself.

Corollary 1. Let L ∈ DREC(1). Then there exists a constant γ > 0 such that
for any m > 0, there exist positive integers cm, pm < γm and for any n > cm we
have (m, n) ∈ L iff (m, n + pm) ∈ L.

Moreover, if ∀m > 0, p̄m denotes the minimal pm constructed as above, then
p̄m+1 = cp̄m for some c ∈ {1, 2, . . . , γ}.

Example 7. Let L = {(m, m+2k) | m, k ≥ 0}. A tl2br-deterministic tiling system
recognizing L is the one associating, for any m, k ≥ 0, to the m-th row of length
m+2k, the local row 0m−11(ab)k, and to the m-th row of length m+2k+1, the
local row 0m−11(ab)ka. In this case the minimal xm is a picture of size (m, m)
(with 1 on the diagonal, 0 under the diagonal and a proper prefix of (ab)∗ in
each row up the diagonal) and the minimal ym is a picture of size (m, 2) (where
rows ab and ba properly alternate).

Example 8. Let L = {(m, 2m) | m ≥ 0}. The tiling system for L that can be
constructed from the DOTA given in [11] (following the canonical construction,
cf. [9]) provides a more involved example of a tl2br-deterministic tiling system,
where the number of columns of both pictures xm and ym grows as m grows.

Given a tl2br-deterministic tiling system (Γ, Θ), let us denote for any m > 0
by k

(Γ,Θ)
m (or simply km when the tiling system is clearly stated) the number of

columns of ȳm constructed as in Proposition 3.

Corollary 2. Let L ∈ DREC(1), let (Γ, Θ) be a tl2br-deterministic tiling sys-
tem for L and let |Γ | = γ. Then ∀m > 0, we have km = 1h12h23h3 . . . γhγ for
some hi ≥ 0, i = 1, . . . , γ.

Proof. The proof is by induction on m. Since L ∈ DREC(1), k1 is at most γ.
For the inductive step note that, from Proposition 3, we have km+1 = ckm for
some c ∈ {1, 2, . . . , γ} and that for km the inductive hypothesis holds.
�

We now apply the necessary condition for DREC(1) stated in Proposition 3 in
order to show that the language Lmult = {(m, km) | m ≥ 0, k ≥ 0} does not
belong to DREC(1). Note that we cannot use Corollary 1 for this goal. For this
we need to deeply analyze the local pictures in Lmult, from a computational
point of view, looking at what local columns must ”represent” and from a more
analytical point of view, looking at the periodicity of the divisors (less than or
equal to a given threshold) in a sequence of consecutive integers. First, for any
m, n > 0, let us denote by Dm(n) the set of all the divisors of n that are less than
or equal to m and by lcm(1, 2, . . . , m) the lowest common multiple of 1, 2, . . . , m.

Deterministic Two-Dimensional Languages over One-Letter Alphabet 155

Proposition 4. The language Lmult does not belong to DREC(1).

Proof. The proof is by contradiction and it consists in showing that if Lmult ∈
DREC(1) then Corollary 2 does not hold. Suppose that Lmult ∈ DREC(1) and
let (Γ, Θ) be a tl2br-deterministic tiling system recognizing it with |Γ | = γ.
From Proposition 3, for any m > 0 there exist xm, ȳm ∈ Γ ∗∗, such that for any
p ∈ L̃m(Θ), with �2(p) > γm, we have p ∈ Pref(xm

�(ȳ∗ �

m)) with �2(ȳm) = km.
We are going to show that, under such hypothesis, for any m > 0, km is a
multiple of lcm(1, 2, . . . , m). This contradicts Corollary 2, since for any prime
integer z such that z > γ, kz would be a multiple of z, against the fact that the
prime divisors of kz must be less than or equal to γ.

Let us show that for any m > 0, km is a multiple of lcm(1, 2, . . . , m).
First we show that, if p ∈ L̃m(Θ) is such that its i-th column is equal to its

j-th one and j > i > �2(xm) + �2(ȳm), then Dm(i) = Dm(j). Let us denote for
any d ≤ m, i ≤ �2(p) by pd,i the subpicture of p consisting of its d rows and
its first i columns. Note that the periodicity of p (i.e. p ∈ Pref(xm

�(ȳ∗ �

m)))
implies a similar periodicity for any subpicture pd,i. Furthermore, since (Γ, Θ)
is a tl2br-deterministic tiling system, if (d, i) ∈ Lmult then its (unique) counter-
image in L(Θ) is pd,i. Now suppose that let d ∈ Dm(j); then (d, j) ∈ Lmult

(note that d is a divisor of n iff the picture (d, n) ∈ Lmult). The first d symbols
in the j-th column of p match the # symbols (by mean of allowed tiles in Θ).
Then so is for the first d symbols in the i-th column of p, pd,i ∈ L(Θ) and,
hence, (d, i) ∈ Lmult i.e. d ∈ Dm(i). Conversely, if d ∈ Dm(i) then (d, i) ∈ Lmult,
that is pd,i is in L(Θ). We show that also pd,j is in L(Θ). Indeed the top and
the left borders match # symbols since p ∈ L̃m(Θ); the right border matches
symbols since it is equal to the right border of pd,i; and finally the bottom
border of pd,j matches # symbols because the bottom border of pd,i does and
the remaining bottom tiles are a repetition of some previous ones (recall that
j > i > �2(xm) + �2(ȳm)). This concludes the proof that, if p ∈ L̃m(Θ) is such
that its i-th column is equal to its j-th one and j > i > �2(xm) + �2(ȳm), then
Dm(i) = Dm(j). In particular we have that for any n > 2γm, since the n-th
column of p is equal to the (n + km)-th one, then Dm(n) = Dm(n + km).

Now, using this fact, we are able to show that, for any m > 0, km is a multiple
of lcm(1, 2, . . . , m). It suffices to show that for any h ∈ {1, 2, . . . , m}, km is a
multiple of h, i.e. km ≡ 0 mod h. Suppose that there exists h ∈ {1, 2, . . . , m}
such that km is not a multiple of h. Then there exists l, 1 ≤ l < h, such
that km ≡ l mod h. Take n such that n > 2γm and n ≡ (h − l) mod h. Then
n + km ≡ 0 mod h and this is against Dm(n) = Dm(n + km).
�
This result has some immediate, but very meaningful consequences. Firstly, con-
sider the notion of unambiguity in tiling system recognizability [8]. A tiling
system for L ⊆ Σ∗∗ is unambiguous when any picture in L has a unique lo-
cal counter-image and L is unambiguous if it is recognized by an unambiguous
tiling system. UREC(Σ) denotes the family of all unambiguous two-dimensional
languages over Σ. As one may expect, determinism implies unambiguity. Fur-
thermore in [1] the proper inclusion of DREC(Σ) in UREC(Σ) is shown. We are
now able to show that it holds even for a one-letter alphabet.

156 M. Anselmo and M. Madonia

Proposition 5. DREC(1) is strictly contained in UREC(1).

Proof. Consider the language Lmult. Proposition 4 shows that it does not belong
to DREC(1). On the other hand we can construct an unambiguous tiling system
recognizing Lmult. Starting from a tiling system T recognizing the language of
square pictures, as sketched in Example 1, we can yield a tiling system for Lmult,
following the construction of a tiling system for the column star of a language in
[9]. We make two disjoint copies of T and we force it to alternate starting with
the first copy. The resulting tiling system is unambiguous, since for any picture
(m, km) the value k is unique.
�

It is well known that OTA are more powerful than DOTA [11] but the examples
given in the literature are on alphabets with cardinality greater than one. The
language Lmult gives an example of a language that is in L(OTA)(1) but not in
L(DOTA)(1).

Corollary 3. L(DOTA)(1) is strictly contained in L(OTA)(1).

Remark 1. Note that a different proof of this result could be obtained observing
that L(OTA)(1)=REC(1) and REC(1) is not closed under complementation [20],
while L(DOTA)(1) is closed under complementation [11].

Another consequence of Proposition 4 regards closure properties of DREC(1).
Also note that, because of Proposition 2, the same non-closure properties hold
for L(DOTA)(1), and L(2AFA)(1) (as far as we know, the properties are not
stated even in those frameworks).

Proposition 6. DREC(1), L(DOTA)(1), and L(2AFA)(1) are not closed nei-
ther under ∗ � nor under ∗ �.

Proof. Consider the language Lmult. In Example 4 we have shown that Lm,m ∈
DREC(1). On the other hand Proposition 4 shows that Lmult = L∗ �

m,m does not
belong to DREC(1). In a similar way, the 90◦ rotation of Lmult is an example
of non-closure under ∗ �.
�

5 DREC(1) and Some Regular Families

In this section we will compare DREC(1) with some families REG(1), L(D),
L(CRD), of languages over a one-letter alphabet, that can be constructed using
union, row-, column- and diagonal-concatenations and their closures. REG(Σ)
is defined in [19], while L(D), L(CRD) are defined in [2].

– REG(1) is the smallest family containing the singleton languages and closed
under union, row- and column-concatenations and stars.

– L(D) is the smallest family containing the empty set, λ0,0, λ0,1, λ1,0 and
closed under union, diagonal-concatenation and star.

– L(CRD) is the smallest family containing the empty set, λ0,0, λ0,1, λ1,0 and
closed under union, row-, column-, and diagonal-concatenations and stars.

Deterministic Two-Dimensional Languages over One-Letter Alphabet 157

Now, let us show some properties and characterizations of these classes that
will be useful later, to yield some comparison results. First we state the closure
of DREC(1) under the boolean operations. The result follows from the closure of
L(DOTA)(Σ) [11] and Proposition 2. It holds for the unary alphabet and not in
general (Proposition 1) since in general mixing tiling systems that are determi-
nistic from different corner-to-corner directions does not yield any determinism.

Corollary 4. DREC(1) is closed under union, intersection and complementation.

Consider now the family REG(1). In [19] the author showed that also REG(1)
is closed under the boolean operations and that the following characterization
holds. Roughly it says that languages in REG(1) contain pictures whose number
of rows is somehow independent from the number of columns.

Proposition 7. ([19]) L is in REG(1) if and only if it is a finite union of
Cartesian product of ultimately periodic sets.

Example 9. Let Lm,m be the language of square pictures (see Example 1). We
have Lm,m = {(1, 1)}∗ �\ = {λ0,1

�\ λ1,0}∗
�\ ∈ L(D), while Lm,m /∈ REG(1). In

fact in Lm,m there are an infinite number of pairs of pictures (n, n) and (n′, n′)
with n �= n′ while (n, n′) /∈ Lm,m (use Proposition 7).

On the other hand in [2] it is shown that L ∈ L(D) iff the set of sizes of pictures
in L is a rational relation and iff L is accepted by a 2NFA. We give here another
characterization, more similar to the one in Proposition 7 for REG(1).

Proposition 8. L ∈ L(D) if and only if it is a finite union of languages of the
form c∗

�\ �\ P ∗ �\ , where c is a single picture and P is a finite set of pictures.
Furthermore L(D) is closed under union, intersection and complementation.

Proof. We use the characterization of rational relations over the unary alphabet
in terms of semilinear sets (or Presburger sets) of IN2 given in [10].
�

We are now able to show the following relations among DREC(1), REG(1), L(D),
and L(CRD).

Proposition 9. DREC(1) is incomparable with L(CRD).

Proof. The language Lmult is in L(CRD) since it is L∗ �

m,m with Lm,m ∈ L(D) (Ex-
ample 9) and L(D)⊆ L(CRD) by definition. On the other hand Lmult /∈DREC(1)
(see Proposition 4).

Consider now L′ = {(m, 2m) | m ≥ 0}. We have L′ ∈ L(DOTA)(1) (see [11])
and hence L′ ∈DREC(1) (see Proposition 2). On the other hand L′ /∈ L(CRD)
(cf. [2]).
�

Proposition 10. REG(1)⊂ L(D)⊆ DREC(1)∩L(CRD).

158 M. Anselmo and M. Madonia

Proof. REG(1)⊂ L(D). Indeed from Proposition 7 any language in REG(1) can
be accepted by a 2NFA that first verifies the number of columns moving right
on the first row (simulating a classical finite automaton on strings), and then
verifies the number of rows moving down on the last column. The inclusion is
strict: for example Lm,m ∈ L(D)\REG(1) (see Example 9).

L(D)⊆DREC(1) since L(D)= L(2NFA)⊂ L(2AFA)=DREC(1).
L(D)⊆ L(CRD) follows from definition.
�

Remark 2. Previous propositions say that the structure of DREC(1) cannot be
captured by classical operations: DREC(1) does not coincide neither with L(D)
nor with L(CRD). And the same result holds if we also consider other opera-
tions, such as intersection and/or complementation, since L(D) is closed under
intersection and complementation, while considering also intersection and/or
complementation of languages in L(CRD) would result in a class equal or bigger
than L(CRD), but never equal to DREC(1).

6 Conclusions and Open Questions

We have shown some properties of DREC(1) that point out the richness and
complexity of deterministic two-dimensional languages, even for a one-letter al-
phabet. The investigation is surely not complete.

First we do not know whether DREC(1) is closed under row or column con-
catenation. Recall that this would also solve the analogous problem for the classes
L(DOTA)(1) or L(2AFA)(1).

It is also an open question whether L(D)=DREC(1)∩L(CRD) or not. Fol-
lowing the characterizations given in this paper, this equivalence would also say
that L(2NFA)(1)= L(2AFA)(1)∩L(CRD), that is a language is accepted by a
2AFA and it is in L(CRD) iff it can be accepted with only existential states.

Further, we have shown that DREC(1) is strictly contained in UREC(1). It
would be interesting to understand whether UREC(1) is strictly contained in
REC(1) or the two classes collapse.

References

1. Anselmo, M., Giammarresi, D., Madonia, M.: From determinism to non-
determinism in recognizable two-dimensional languages. In: Harju, T., Karhumäki,
J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 36–47. Springer, Heidelberg
(2007)

2. Anselmo, M., Giammarresi, D., Madonia, M.: New Operators and Regular Expres-
sions for two-dimensional languages over one-letter alphabet. Theoretical Com-
puter Science 340(2), 408–431 (2005)

3. Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambiguous Recog-
nizable two-dimensional languages. RAIRO: Theoretical Informatics and Applica-
tions 40(2), 227–294 (2006)

4. Bertoni, A., Goldwurm, M., Lonati, V.: On the complexity of unary tiling-
recognizable picture languages. In: Thomas, W., Weil, P. (eds.) STACS 2007.
LNCS, vol. 4393, pp. 381–392. Springer, Heidelberg (2007)

Deterministic Two-Dimensional Languages over One-Letter Alphabet 159

5. Blum, M., Hewitt, C.: Automata on a two-dimensional tape. In: IEEE Symposium
on Switching and Automata Theory, pp. 155–160 (1967)

6. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, London
(1974)

7. Giammarresi, D.: Two-dimensional languages and recognizable functions. In:
Rozenberg, G., Salomaa, A. (eds.) Procs. in Dev. on Language Theory 1993, pp.
290–301. World Scientific Publishing Co., Singapore (1994)

8. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. Journal Pattern
Recognition and Artificial Intelligence 6(2&3), 241–256 (1992)

9. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., et al.
(eds.) Handbook of Formal Languages, vol. III, pp. 215–268. Springer, Heidelberg
(1997)

10. Ginsburg, S., Spanier, E.: Semigroups, Presburger formulas, and languages. Pacific
Journal of Mathematics 16, 285–296 (1966)

11. Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessellation
acceptors. Information Sciences 13, 95–121 (1977)

12. Inoue, K., Nakamura, A.: Two-dimensional finite automata and unacceptable func-
tions. Intern. J. Comput. Math. A7, 207–213 (1979)

13. Ito, A., Inoue, K., Takanami, I.: Deterministic two-dimensional On-line tesselation
Acceptors are equivalent to two-way two-dimensional alternating finite automata
through 180◦-rotation. Theor. Comp. Sc. 66, 273–287 (1989)

14. Inoue, K., Takanami, I.: A characterization of recognizable picture languages. In:
Nakamura, A., Saoudi, A., Inoue, K., Wang, P.S.P., Nivat, M. (eds.) ICPIA 1992.
LNCS, vol. 654, Springer, Heidelberg (1992)

15. Inoue, K., Takanami, I., Taniguchi, H.: Two-dimensional alternating Turing ma-
chines. Theor. Comp. Sc. 27, 61–83 (1983)

16. Lindgren, K., Moore, C., Nordahl, M.: Complexity of two-dimensional patterns.
Journal of Statistical Physics 91(5-6), 909–951 (1998)

17. Kari, J., Moore, C.: Rectangles and squares recognized by two-dimensional au-
tomata. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is
Forever. LNCS, vol. 3113, pp. 134–144. Springer, Heidelberg (2004),
http://www.santafe.edu/\simmoore/pubs/picture.html

18. Kinber, E.B.: Three-way Automata on Rectangular Tapes over a One-Letter Al-
phabet. Information Sciences 35, 61–77 (1985)

19. Matz, O.: Regular expressions and Context-free Grammars for picture languages.
In: Reischuk, R., Morvan, M. (eds.) STACS 97. LNCS, vol. 1200, pp. 283–294.
Springer, Heidelberg (1997)

20. Matz, O.: Dot-depth, monadic quantifier alternation, and first-order closure over
grids and pictures. Theoretical Computer Science 270(1-2), 1–70 (2002)

21. Potthoff, A., Seibert, S., Thomas, W.: Nondeterminism versus determinism of finite
automata over directed acyclic graphs. Bull. Belgian Math. Soc. 1, 285–298 (1994)

http://www.santafe.edu/$sim $moore/pubs/picture.html

Recognizable Picture Languages and

Polyominoes

Giusi Castiglione and Roberto Vaglica

Università di Palermo, Dipartimento di Matematica e Applicazioni,
via Archirafi, 34 - 90123 Palermo, Italy

{giusi, vaglica}@math.unipa.it

Abstract. We consider the problem of recognizability of some classes
of polyominoes in the theory of picture languages. In particular we
focus our attention on the problem posed by Matz of finding a non-
recognizable picture language for which his technique for proving the
non-recognizability of picture languages fails. We face the problem by
studying the family of L-convex polyominoes and some closed families
that are similar to the recognizable family of all polyominoes but result to
be non-recognizable. Furthermore we prove that the family of L-convex
polyominoes satisfies the necessary condition given by Matz for the rec-
ognizability and we conjecture that the family of L-convex polyominoes
is non-recognizable.

1 Introduction

The main ingredients of the paper are polyominoes and the theory of picture
languages (or two-dimensional languages).

First, we recall that a discrete set is a finite subset of the Cartesian plane
Z × Z defined up to translations. A polyomino is a discrete set whose points are
represented by cells (unitary squares) and whose interior is connected. Polyomi-
noes are very famous objects first studied by Golomb in 1954 (cf.[16],[15]) and
popularized by Gardner in 1957 (cf.[12]). They are related to many problems such
as tiling (cf.[14],[17]), enumeration (cf.[2]) and discrete tomography (cf.[1],[19])
and find applications in the study of lattice models in physics (cf.[11],[18]). Cause
the difficulty of the general problems, in the different areas, several subclasses
were defined by using the geometrical notion of convexity. Thus, many classes
of polyominoes were born such as, for example, the class of h-convex polyomi-
noes (whose rows are connected), v-convex polyominoes (whose columns are
connected) and convex polyominoes (both h-convex and v-convex).

Recently, it has been introduced a classification of convex polyominoes that
has in the first level the class of L-convex polyominoes. This class has been con-
sidered by several points of view with nice results. In [4] it is shown that the
family of L-convex polyominoes is a well ordering according to the subpicture
order. In [5] and [6] combinatorial aspects of L-convex polyominoes are ana-
lyzed by giving the result of the enumerations according to the semiperimeter
and the area. Furthermore, L-convex polyominoes have been characterized with

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 160–171, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Recognizable Picture Languages and Polyominoes 161

respect to uniqueness from the tomographical point of view (see [7]). Discrete
tomography is based on the concept of projections, in our case horizontal and
vertical projections. The horizontal (resp. vertical) projections of a discrete set
is an integer vector whose components represent the number of cells in each row
(resp. column) ordinately. A discrete set is said to be unique if another discrete
set with the same projections does not exist. As regards L-convex polyominoes
we have that a discrete set is an L-convex polyomino if and only if it is convex
and unique.

Another field of research in which polyominoes recently took relevance is that
one of two-dimensional languages. In this field, in recent years, new formal ap-
proaches have been proposed in order to extend results and techniques used on
words to pictures. In [13] the authors give the basic definition of tiling system
and tiling recognizability of picture languages and in [21] Matz gives a technique
for showing that a picture language is non-recognizable. More precisely, Matz
gives a necessary condition satisfied by tiling recognizable picture language and
poses the problem of finding a non-recognizable picture language for which his
technique fails to prove the non-recognizability.

As regards languages of polyominoes, in [9] the authors give the idea to in-
vestigate whether the main classes of polyominoes are represented by recogniz-
able picture languages. They give the tiling systems for languages representing
the classes of h-convex, v-convex and convex polyominoes. Reinhardt, in a very
technical paper, proves that the picture language that represents the class of the
polyominoes is tiling recognizable (see [22]).

Our aim is investigating about recognizability of L-convex polyominoes. Our
first motivation is given by the before mentioned problem posed by Matz. In-
deed, in this paper, we prove that the family of L-convex polyominoes satisfies
the condition given by Matz for tiling recognizable languages and we conjec-
ture that L-convex polyominoes are non-recognizable. Also in [9] the authors
study the language of L-convex polyominoes. They try to prove its recognizabil-
ity but they get the result only by limiting the number of maximal rectangles
contained in each polyomino. Here we use another kind of approach. In par-
ticular we use the study of some classes strictly related to L-convexes and the
tomographical characterization of L-convex polyominoes. We analyze polyomi-
noes that are unique and h-convex (resp. v-convex) and we prove that they
are non-recognizable. As we will see these polyominoes are very closed both
L-convex polyominoes and polyominoes. In this way we obtain the class of
L-convex polyominoes as the intersection of two non-recognizable languages, the
unique h-convex and the unique v-convex polyominoes. At the same time, by
proving that unique discrete set are non-recognizable, we have that the class of
L-convex polyominoes is the intersection of a recognizable and a non-recognizable
picture language i.e. the convex polyominoes and the unique discrete set respec-
tively. The mentioned results do not allow us to prove that L-convex polyomi-
noes are non-recognizable but lead us to conjecture the non-recognizability of
L-convex polyominoes. If our conjecture is true it gives a counterexample to
the inversion of Matz’s lemma and, furthermore, to prove it would mean to

162 G. Castiglione and R. Vaglica

introduce a new method to prove the non-recognizability. In any case, the re-
sults of this paper show that the language of L-convex polyominoes is on the
borderline between recognizability and non-recognizability, and it is an interest-
ing object of study in the theory of picture languages.

2 Polyominoes

In this section we give some basic definitions and notations about polyominoes.
For a complete background we refer to [15,16,17]. A discrete set is a finite subset
of the Cartesian plane Z × Z defined up to translations. A discrete set can be
represented as a binary matrix in {0, 1} or by a set of cells (unitary squares)
as depicted in Fig. 1. If we consider the minimum rectangle r containing the
discrete set s we can number its rows and columns from the top to the bottom
and from the left to the right respectively. In the sequel we will refer to both
the two mentioned representations and we will denote by s(i, j) the entry of the
matrix of the i-th row and the j-th column. An entry 1 (resp. 0) corresponds to
the presence (resp. absence) of a cell.

0 1 1 1 0 0 1

1 0 0 0 1 0 0

0 0 1 0 1 0 0

0 0 1 0 0 0 0

1 1 0 1 0 0 1

1 0 0 0 0 1 1

1 0 0 0 0 1 0

Fig. 1. A discrete set and its representations in terms of a binary matrix and a set of
cells

A very famous class of discrete sets is the class of polyominoes. A Polyomino
is a discrete set in which every pair of its cells is connected. A polyomino is said
to be v-convex (resp. h-convex) if each of its column (resp. row) is connected. A
polyomino is said to be convex if it is both v-convex and h-convex (see Fig. 2).
We denote by V (resp. H) the set of v-convex (resp. h-convex) polyominoes and
by C the set of convex polyominoes.

In [3] it was introduced a new property of convexity that involves the kind
of paths connecting pairwise the cells. The authors call step a pair of adjacent
cells, distinguishing four types of steps: north N = (0, 1), south S = (0, −1), east
E = (1, 0), and west W = (−1, 0). A path is a sequence of steps. A self-avoiding
path (i.e. made of distinct cells) is said to be monotone if it consists of steps
of, at most, two types. In the mentioned paper, it was proved that a polyomino
is convex if and only if every pair of its cells is joined by a monotone path.
Hence they gave a classification of convex polyominoes by taking into account
the minimum number of changes of direction in their monotone paths. Let k ∈ N,

Recognizable Picture Languages and Polyominoes 163

Fig. 2. A polyomino, a v-convex polyomino and a convex polyomino

a convex polyomino is said to be k-convex if every pair of its cells can be joined
by a monotone path with at most k changes of direction.

Definition 1. An L-convex polyomino p is a convex polyomino in which every
pair of cells is connected by a path, of cells of p, with at most one change of
direction. Such a path is called (cause its shape) L-path.

The class of such polyominoes is here denoted by L. In Figure 3 it is depicted
an L-convex polyomino where the shaded cells form an L-paths.

L-convex polyominoes has been studied with regards to reconstruction from
partial information. A very famous approach in this field is Discrete Tomography.
It considers the problem to reconstruct a discrete set from measurements, called
projections, of the number of cells in the set that lie on lines with fixed direction
(see [19] and also [1], [20], for a survey). In the special case of a convex polyomino
p, one considers horizontal and vertical projections, i.e. the two vectors H and
V whose components give the the number of cells of p in each row and in each
column, respectively. See Fig. 4 for an example.

Given two vectors H and V the class of discrete sets having H and V as
projections is denoted by U(H, V). It is well known that in the general case the
knowledge of the horizontal and vertical projections of a discrete set are not
sufficient to univocally determine it, see for example in Fig. 4 two polyominoes
with the same projections (cf. [10]). Many papers have been devoted to the study
of cardinality of this set each time by considering different convexity hypothesis

�
�
�

�
�
�

��
��
��

��
��
��

Fig. 3. An L-convex polyomino s and an L-path included in it

164 G. Castiglione and R. Vaglica

to reduce the ambiguity. A classical problem of discrete tomography is the finding
of unique sets with respect to H and V .

Definition 2. A discrete sets p is said to be unique with respect to (H, V) if
U(H, V) = {p}.

A classical approach (cf. [19]) suggests to test uniqueness of discrete set by
finding some switching components in it.

Definition 3. A switching component of a discrete set p is a set {p(i1, j1),
p(i1, j2), p(i2, j1), p(i2, j2)} such that:

pi1j1 = pi2j2 = 1 − pi1j2 = 1 − pi2j1 .

In particular the following basic theorem holds:

Theorem 1. (Ryser’s Theorem) A discrete set is nonunique (with respect to its
horizontal and vertical projections) if and only if it has a switching component.

In Fig. 4, we can see an example of two different discrete sets with the same
projections where we highlight a switching component.

1

1 0

0 0

0 1

1

Fig. 4. Two polyominoes with the same projections H = (1, 2, 3, 3, 3, 1) and V =
(2, 6, 4, 1). The two polyominoes differ from one another in a switching component.

As regards the L-convexity, we can easily observe that L-convex polyominoes
do not have any switching components. In [7] the following lemma is proved.

Lemma 1. An L-convex polyomino p is unique with respect to its horizontal
and vertical projections.

Finally, recall that an integer vector X = (x1, . . . , xk) is unimodal, if there exists
0 ≤ i ≤ k, such that x1 ≤ x2 ≤ · · · ≤ xi and xi ≥ xi+1 ≥ · · · ≥ xk. The element
xi is here called mode. Hence, we have the theorem (cf. [7]):

Theorem 2. Let H, V be two unimodal integer vectors and p a discrete set of
U(H, V).

U(H, V) = {p} ⇔ p is an L-convex polyomino

As a simple consequence, we have the following remark that will be referred in
the next sections because it will be the core of some new definitions.

Remark 1. Let p be a discrete set.

p is convex and unique ⇔ p is a L-convex polyomino.

Recognizable Picture Languages and Polyominoes 165

3 Recognizable Picture Languages and Polyominoes

Here we briefly recall some definitions regarding the theory of two-dimensional
languages and tiling systems. For general background we refer the reader to
[13]. A picture is a two dimensional rectangular array of elements in a finite
alphabet. Given a finite alphabet Σ, let Σ∗,∗ denote the set of all the pictures
over Σ and Σm,n the set of pictures with m columns and n rows, i.e. who’s size
is (m, n). A picture language (or a two-dimensional language) is a set of pictures.
A subpicture of a picture p is a subarray of p. A (2, 2) subpicture is called a tile.
Moreover, we denote by B2,2(p) the set of all the tiles of p.

As usual, we identify the boundaries of a picture by surrounding it with a
special symbol. More precisely, given a picture p ∈

∑m,n, we define p̂ as the
picture of size (m+2, n+2) obtained by surrounding p with the special boundary
symbol � /∈ Σ. If p, q ∈ Σ∗,∗ are two pictures with the same number of rows,
with pq we will denote the column-concatenation of p and q (see [13] for details).

Definition 4. A picture language L over Σ is called local if there exists a finite
set Θ of tiles over Σ ∪ {�} such that L = {p|p ∈ Σ∗,∗ and B2,2(p̂) ⊆ Θ}.

If Θ is the set of tiles that identifies the local picture language L, we will write
L = L(Θ).

Definition 5. A Tiling system (TS) is a 4-tuple τ = (Σ, Γ, Θ, π), where Σ and
Γ are two finite alphabets, Θ is a finite set of tiles over the alphabet Γ ∪{�} and
π : Γ → Σ is a projection.

The tiling system τ defines the language L = π(L(Θ)), given by the projection
π on the local language L(Θ). We will briefly summarize it by writing L = L(τ).
We say that a picture language L ⊆ Σ∗,∗ is recognizable by tiling system (or
equivalently tiling recognizable) if there exists a tiling system τ = (Σ, Γ, Θ, π)
such that L = L(τ).

Fig. 5. A stack polyomino

The family of discrete sets and, in particular, sets of polyominoes, are triv-
ially picture languages, over the binary alphabet, that can be or not be tiling
recognizable. In the following we give an example of a language of polyominoes
that is tiling recognizable.

166 G. Castiglione and R. Vaglica

Example 1. A stack polyomino (see Fig. 5) is a convex polyomino containing
two adjacent vertices of its minimal bounding rectangle (cf. [2]). If we call S the
family of stack polyominoes we have that S is tiling recognizable (cf. [9]). Let
p ∈ S, let us observe that the set of entries 0 is composed of two convex distinct
parts A and B located, respectively, at the two vertices, not belonging to p, of
the rectangle. To each stack p a picture can be associated by representing with
a 1 the cells of p, and with a and b the cells of A and B respectively (see Fig. 6).
Let LS the language of such pictures over the alphabet {1, a, b}.

BA

#
a a b b b
a b b b #aa

a

b b b
a a b b
#
#

a a

a

a a b b b

#

1 1
1 1

1 1 1
1 1 1
1 1 1 1

1111111
1 1 1 1 1 1 1 1

Fig. 6. A stack polyomino p and its representation in LS

Let us consider the following sets of tiles

ΘR =
{

#

#
,
#

1
,
#

1 #
,
1

#
,

1 #

#
,
#

1 1
,

1 1

#
,
1

1
,

1 #

1 #
,

1 1

1 1

}
,

ΘA =
{

a a
a a

,
#
a

,
#
a a

,
a
a

,
#
a 1

,
a
1

,
a a
a 1

,
a 1
a 1

,
a a
1 1

,
a 1
1 1

}
,

ΘB =
{

b b
b b

,
#
b # ,

#
b b

,
b #
b # ,

#
1 b

,
b #
1 # ,

b b
1 b

,
1 b
1 b

,
b b
1 1 ,

1 b
1 1

}
.

LS is local over the alphabet ΣS = {1, a, b} and LS = L(θR ∪ θA ∪ θB). If
we consider the projection πS : ΣS → {0, 1}, such that πS(a) = πS(b) = 0 and
πS(1) = 1 we have πS(LS) = S that is S is tiling recognizable.

In [21], O. Matz gives in a lemma a necessary condition of tiling recognizability
whose statement is the following.

Lemma 2. Let L ⊆ Σ∗,∗ be tiling recognizable. Let {Mn}n∈N be a sequence of
sets Mn ⊆ Σn,+ × Σn,+ such that ∀n following relations hold:

∀(p, q) ∈ Mn we have pq ∈ L (1)

Recognizable Picture Languages and Polyominoes 167

∀(p, q)
= (p′, q′) ∈ Mn we have {pq′, p′q} � L. (2)

Then |Mn| is 2O(n) [21].

Furthermore, in the same paper, he raises the question of finding a picture lan-
guage for which this lemma cannot be applied to prove it is not recognizable.
He conjectures the language of square pictures over {a, b} with number of a’s
equal to number of b’s as a possible solution. In fact, as it is easy to see, for
this language one can not constructs a sequence {Mn} of sets satisfying the two
conditions of lemma but with order definitively greater than 2O(n). However, this
conjecture has been shown to be false. Indeed, K.Reinhardt shows the following
more general result.

Theorem 3. The language of picture over {a, b}, where the number of a’s is
equal to the number of b’s and having a size (n, m) with m < 2n and n < 2m, is
recognizable (cf. [23]).

With the motivations explicated in the introduction we want to continue the
study of languages of polyominoes taking into consideration L-convexity.

Theorem 4. Let {Mn}n∈N be a sequence of sets Mn ⊆ Σn,+ × Σn,+, with
Σ = {0, 1}. For all n ∈ N, if Mn satisfies relations (1) and (2) with respect to
the language L of L-convex polyominoes then |Mn| is 2O(n).

Proof. Firstly, let us observe that for any (p, q) ∈ Σn,+ × Σn,+, if pq ∈ L then
p, q ∈ L. Hence, we have that for any n ∈ N, a set Mn satisfying first condition
is a subset of L × L.

Let p an L-convex polyomino having vertical projections (c1, c2, ..., ck). We know
that the vector of vertical projections is unimodal. Let 1 ≤ m ≤ k such that
cm is the mode and cm+1
= cm if it exists. To p we can associate, by a suit-
able deletion of columns, the L-convex polyomino p̃ with vertical projections
(a1, ..., ah, cm, b1, ..., bl), with ai
= aj , for 1 < j < h, bi
= bj , for 1 < j < l and
such that the sets

{c1, ..., cm} = {a1, ..., ah, cm} and {cm+1, ..., ck} = {b1, ..., bl}.

Let us observe that p̃ ∈ L. So, we can define in L an equivalence relation ∼ as
follows

p ∼ q iff p̃ = q̃.

If we denote by [p] the equivalence class represented by p ∈ L and L̃ the closure
of L with respect to ∼, by definition, we have that:

– ∀p ∈ L, p̃ ∈ [p];
– ∀(p, q)
= (p′, q′) ∈ [p] × [q], such that pq, p′q′ ∈ L we have pq′, p′q ∈ L;

168 G. Castiglione and R. Vaglica

Our aim is to know |Mn|. For this reason we compute |L̃∩Σn,+| i.e. we enumerate
L̃ according to the number of rows. In [6] and [8], in order to enumerate L-convex
polyominoes by rows and columns, the authors represent L-convex polyominoes
in terms of words of a regular language. By using the same coding we obtain
the regular expression for the language whose words represent the elements of
L̃. That is

a
(
b + c+a + c+d + c+da + bda + bd + ba

)∗
b . (3)

Let l̃i,j be the number of polyominoes of L̃ with i+1 rows and j+1 columns.
From (3), removing the first and the last letter, we can obtain the generating
function for these numbers, as described in [24], after setting a = d = y and
b = c = x :

L̃(x, y) =
∑

i,j≥0

l̃i,j xiyj =
1

1 − x − 2xy − xy2 − 2xy

1 − x
− xy2

1 − x

by setting y = 1, i.e. considering the generating function with respect to the
number of rows we have

L̃(x) =
∑
n∈N

l̃nxn =
1 − x

4x2 − 8x + 1

and closed formula for l̃n, i.e. the number of L-convex polyominoes of L̃ having
n rows, is

l̃n =
1
8

[(
2

2 +
√

3

)n

+
(

2
2 −

√
3

)n]
= |L̃ ∩ Σn,+|.

Hence, the thesis follows.

In next section we give some results to introduce our conjecture about the lan-
guage of L-convex polyominoes.

4 Lh-convex and Lv-convex polyominoes

Lemma 1 states that all the convex polyominoes that are unique with respect to
horizontal and vertical projections are L-convex and viceversa. Now we define a
more general family of polyominoes by considering those polyominoes that are
unique and horizontally (resp. vertically) convex.

Definition 6. A polyomino p is called Lh − convex (resp. Lv − convex) if it is
h-convex (resp. v-convex) and it has no switching component.

We call these polyominoes Lh-convex (resp. Lv − convex) and denote the family
by Lh (resp. Lv). Actually, this concept is not only a set-theoretic generalization
but introduces a more general convexity property than the L-convexity. More
precisely, it is easy to see that an Lh (resp. Lv) polyomino p is such that each pair

Recognizable Picture Languages and Polyominoes 169

(a) (b)

Fig. 7. (a) An Lh − convex polyomino and an L-path whose vertical arm is partially
included in the polyomino; (b) an Lv−convex polyomino and an L-path with horizontal
arm partially included in the polyomino

of its cells can be joined by an L-path whose horizontal (resp. vertical) arm is
entirely contained in p and whose vertical (resp. horizontal) arm can result to be
partially contained in p (see Fig. 7). Note that, in both the two cases of convexity,
the cell in which the L-path changes direction must be a cell of p. Hence, we have,
trivially, that cells of a unique discrete set p have the property that they pairwise
can be joined by an L-path whose both the arms can be partially contained in
p. So, we can resume with the following set-theoretic relations

L ⊂ Lh ⊂ U , L ⊂ Lv ⊂ U ,

L = Lh ∩ V = Lv ∩ H = C ∩ U

and
L = Lh ∩ Lv .

Theorem 5. Lh (resp. Lv) is not tiling recognizable.

Proof. The proof is based on Matz’s lemma. Roughly speaking, what we are
doing is to construct a sequence of pair of special picture sets whose elements
satisfy relations (1) and (2) of the lemma. However, as we will see, the cardinality
of an element of the sequence is definitively greater than 2O(n). Let Σ = {0, 1}
and σ ∈ Sn (i.e. a permutation of the symmetric group of degree n). We define
pσ as the picture of size (n, n), whose i-th row contains 0 in its first n − σ(i)
positions and 1 in the remainders. With ps

σ we denote the mirror image of pσ

with respect to the vertical line at the right of its last column. It is easy to see
that the picture pσps

σ (∀σ ∈ Sn) has not any switching component (see Fig. 8).
Vice versa we note that the picture pσps

γ , with σ
= γ, has got, at least, one
switching component. Indeed, let I and J the two indexes such that

σ(I) = γ(J) = Max{σ(i) : σ(i) = γ(j) and i
= j}i,j=1,...,n..

As it is easy to check, a switching component is given by the intersection of
the two rows with indexes I and J with the columns with indexes n − σ(I) + 1
and n + γ(J) (see Fig. 8). We can resume by saying that for all partitions σ, γ

170 G. Castiglione and R. Vaglica

the picture pσps
γ has no switching component if and only if σ = γ. This implies

that for all n ≥ 1 the set Mn = {(pσ, ps
σ) | σ ∈ Sn} satisfies the conditions of

Lemma 2. However, since | Mn |=| Sn |= n!, from Lemma 2 we have that Lh is
not tiling recognizable.

(a) (b)

0
10

1

Fig. 8. The picture pσps
γ with: (a) σ = γ = {2, 4, 3, 5, 1}; (b) σ = {2, 5, 3, 4, 1} and

γ = {1, 5, 4, 2, 3}

By considering the same sequence of the previous proof we have that the follow-
ing theorem holds.

Theorem 6. U is not tiling recognizable.

Hence, we can resume that the family of L-convex polyominoes can be written
either as the intersection of a tiling recognizable picture language (H) and a
not tiling recognizable picture languages (Lv), or as the intersection of two not
tiling recognizable picture languages (Lv and Lh). However, although we are
able to isolate the main properties that lead to the L-convexity (as unicity and
convexity) and to give an answer about the tiling recognizability for any of this
subclass, both the previous two relations do not bring us to resolve the open
problem but led us to advance the following conjecture.

Conjecture 1. L is not tiling recognizable.

References

1. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex poly-
ominoes from horizontal and vertical projections. Theoret. Comput. Sci. 155, 321–
347 (1996)

2. Bousquet-Mèlou, M.: A method for the enumeration of various classes of column-
convex polygons. Dis. Math. 154, 1–25 (1996)

3. Castiglione, G., Restivo, A.: Reconstruction of L-convex Polyominoes. Electronic
Notes in Discrete Mathematics 12 (2003)

4. Castiglione, G., Restivo, A.: Ordering and Convex Polyominoes. In: Margenstern,
M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 128–139. Springer, Heidelberg (2005)

5. Castiglione, G., Frosini, A., Restivo, A., Rinaldi, S.: Enumeration of L-convex
Polyominoes. Theoret. Comput. Sci. 347, 336–352 (2005)

Recognizable Picture Languages and Polyominoes 171

6. Castiglione, G., Frosini, A., Munarini, E., Restivo, A., Rinaldi, S.: Enumeration of
L-convex Polyominoes, II. Bijection and area. In: FPSAC 2005, Taormina (June
20–25, 2005)

7. Castiglione, G., Frosini, A., Restivo, A., Rinaldi, S.: A Tomographical Characteri-
zation of L-convex Polyominoes. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.)
DGCI 2005. LNCS, vol. 3429, pp. 115–125. Springer, Heidelberg (2005)

8. Castiglione, G., Frosini, A., Munarini, E., Restivo, A., Rinaldi, S.: Combinatorial
aspects of L-convex polyominoes. In: European Journal of Combinatorics (In Press)

9. De Carli, F., Frosini, A., Rinaldi, S., Vuillon, L.: On the Tiling System Recogniz-
ability of Various Classes of Convex Polyominoes. In: Annals of combinatorics (To
appear)

10. Del Lungo, A., Nivat, M., Pinzani, R.: The number of convex polyominoes recon-
structible from their orthogonal projections. Discrete Math. 157, 65–78 (1996)

11. Dhar, D.: Equivalence of two-dimensional directed animal problem to a onedimen-
sional path problem. Adv. in Appl. Math. 9, 959–962 (1988)

12. Gardner, M.: Mathematical Games. Scientific American 196, 126–134 (1957)
13. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Salomaa, A., Rozem-

berg, G. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer, Hei-
delberg (1997)

14. Girault-Beauquier, D., Nivat, M.: Tiling the plane with one tile, Proceedings of the
sixth annual symposium on Computational geometry, Berkley, California, United
States, June 07-09, 1990 (1990)

15. Golomb, S.W.: Checker boards and polyominoes. Amer. Math. Monthly 61, 675–
682 (1954)

16. Golomb, S.W.: Polyominoes. Scribner, New York (1965)
17. Golomb, S.W.: Polyominoes: Puzzles, Patterns, Problems and Packing. Princeton

Academic Press, London (1996)
18. Hakim, V., Nadal, J.P.: Exact result for 2D directed lattice animals on a strip of

finite width. J. Phys. A: Math. 16, L213–L218 (1983)
19. Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms and Ap-

plications, Birkhauser Boston, Cambridge, MA on of convex 2D discrete sets in
polynomial time. Theoret. Comput. Sci. 283, 223–242 (2002)

20. Kuba, A., Balogh, E.: Reconstruction of convex 2D discrete sets in polynomial
time. Theoret. Comput. Sci. 283, 223–242 (2002)

21. Matz, O.: On piecewise testable, starfree, and recognizable picture languages. In:
Nivat, M. (ed.) ETAPS 1998 and FOSSACS 1998. LNCS, vol. 1378, pp. 203–210.
Springer, Heidelberg (1998)

22. Reinhardt, K.: On some recognizable picture-languages. In: Brim, L., Gruska, J.,
Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 760–770. Springer, Heidelberg
(1998)

23. Reinhardt, K.: The #a = #b Pictures are Recognizable. In: Ferreira, A., Reichel,
H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 527–538. Springer, Heidelberg (2001)

24. Salomaa, A., Soittola, M.: Automata-theoretic aspects of formal power series.
Springer, New York (1978)

An Algebra for Tree-Based Music Generation

Frank Drewes and Johanna Högberg

Department of Computing Science, Ume̊a University
S–90187 Ume̊a, Sweden

{drewes,johanna}@cs.umu.se

Abstract. We present an algebra whose operations act on musical pieces,
and show how this algebra can be used to generate music in a tree-based
fashion. Starting from input which is either generated by a regular tree
grammar or provided by the user via a digital keyboard, a sequence of
tree transducers is applied to generate a tree over the operations provided
by the music algebra. The evaluation of this tree yields the musical piece
generated.

1 Introduction

The purpose of this paper is to show that certain musical structures can be
generated in a grammatical manner by using a general method known as tree-
based generation. Known from the areas of graph and picture generation [Eng97,
Dre06], a tree-based generator consists of a tree generator and a Σ-algebra. The
tree generator is any formal device (e.g., a grammar), that generates a set of
trees over Σ. The algebra is then used to evaluate these trees.

Thus, the type of objects being generated depends on the domain of the al-
gebra. Here, we exploit this fact for the generation of music. To be precise,
we use the term music as a shorthand for “sound structures that adhere to
certain basic rules of composition”. Rather than trying to imitate human com-
posers, we are interested in finding out how and in how far the formal structures
found in music can be captured using the devices of formal language theory
and, in particular, tree-based generators. A precursor of the approach presented
here is the system Willow [Hög05], which consists of a regular tree grammar g
and a sequence td1, . . . , tdn of top-down tree transducers (td transducers, see,
e.g. [GS97, FV98]). Intuitively, g generates a (tree representing a) coarse rhyth-
mical structure. This tree is then passed through td1, . . . , tdn. Each of them
enriches the tree to add a certain musical attribute, e.g. tempo, chord progres-
sion, or melodic arc. Finally, the output tree of tdn represents the musical piece
generated.

In Willow, the generated trees are interpreted in an ad hoc way rather than
using a formally defined algebra. In this paper, we present such an algebra and
show how it can be used to generate music in a fully tree-based manner. Another
extension of the previous system is that some musical attributes are realised
by macro tree transducers (mt transducers) rather than td transducers, as this

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 172–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Algebra for Tree-Based Music Generation 173

device is particularly suited to model recurring variations on a pattern. Moreover,
we now allow the user to input themes by means of a digital keyboard.

Formally, if user input is used, it is translated into a tree that becomes the
input of (macro or top-down) tree transducers tt1, . . . , ttn, thus replacing the
initial tree generated by the regular tree grammar g. However, whereas g gener-
ates trees over a finite output signature, user input gives rise to trees containing
symbols which are unknown at the time the tree transducers tt1, . . . , ttn are
designed. Such a situation cannot be handled by ordinary tree transducers; tt1
would simply reject any tree containing an unknown symbol. In contrast, the ap-
propriate behaviour would be to “tolerate” them, i.e. copy them to the output
without doing anything. Therefore, we propose a proper generalisation of the
mt transducer called tolerant mt transducer (tmt transducer). A tmt transducer
has, as a subset of its set of states, a set of so-called tolerant states. Whenever
an unknown input symbol is encountered in a tolerant state, this symbol is sim-
ply copied to the output and the computation continues on its subtrees in the
same state. In all other situations, a tmt transducer behaves like an ordinary mt
transducer. As mt transducers in their turn generalise td transducers, we also
get a tolerant version of the td transducer (ttd transducer).

To the best of our knowledge, no tree-based approach (in the sense described
above) to the generation of music has been proposed earlier (except for the first
attempt made in [Hög05]). However, there are some publications, often with a
somewhat different focus, that propose other approaches to music generation
using techniques from formal language theory.

In [Jur06], Jurish gives a characterisation of generic musical structure within
the framework of formal language theory. Tojo and Oka [TON06] present an
analysis system for chord progressions based on head-driven phrase structure
grammars. In [Pru86], Prusinkiewicz explores the generation of musical scores
by means of L-systems and the so-called turtle geometry. This approach is further
developed by Worth and Stepney, who describe their search for simultaneously
‘pleasing’ graphical and musical renderings of languages generated by L-systems
in [WS05]. Another device that has been used for the generation of music is the
cellular automaton. A survey of this type of work is found in [BELM04].

Related approaches can also be found in the enclosing field of algorithmic
composition. Markov models appear frequently in music theory, where they are
used both as a compositional device [Ame89, Vis04], and for attribute classifi-
cation [SXK04, CV01]. Genetic algorithms have also become increasingly popu-
lar [HG91, Jac95], as have approaches to deriving music from fractals and chaotic
systems [Cha03]. Synthesis and analysis based on neural networks and learning
systems are described in [Bha88, BDPV94, Tod91] and [Moz94]. However, most
established is probably the linguistic approach. Two representatives of this line
of research are Baroni [Bar83] and Moorer [Moo72].

The structure of this paper is as follows. In the next section, we compile
the terminology around trees and tree generation required, including the new
concept of tolerant mt transducers. In Section 3, the music algebra is introduced.
An example is discussed in Section 4, and Section 5 concludes the paper.

174 F. Drewes and J. Högberg

An implementation of the music algebra has been added to Treebag [Dre06],
a system that allows to define and execute tree grammars and tree transducers,
and interpret the resulting trees by means of some algebra. In this way, the ex-
ample presented in Section 4 has been realized. Both the implementation and the
example can be downloaded from http://www.cs.umu.se/∼johanna/algebra.

2 Tree Generation

Throughout this paper, we denote the natural numbers (including 0) by N, and
Z and R

+ denote the integers and the positive reals, resp. The set R
+ ∪ {0} of

nonnegative reals is denoted by R
+
0 . For n ∈ N, [n] denotes the set {1, . . . , n}.

We denote the power set of a set S by ℘(S) and the set of all finite strings over
S by S∗; the empty string is denoted by λ. The transitive and reflexive closure
of a binary relation → is denoted by →∗.

Let B be the set consisting of the three special symbols ‘[’, ‘]’, and ‘,’. The set
T of all trees is the smallest set of strings such that, for every symbol f /∈ B and
all trees t1, . . . , tk ∈ T (k ∈ N), the string f [t1, . . . , tk] is in T as well. As usual,
the set of all subtrees of f [t1, . . . , tk] contains the tree itself and all subtrees of
its direct subtrees t1, . . . , tk. As a notational simplification, we identify the tree
f [] with f . In this sense, every single symbol is a tree. As another notational
simplification, a tree of the form g[t1] (i.e., having only one direct subtree) may
be denoted by g t1.

For a tree t = f [t1, . . . , tk], the set nod(t) of nodes of t is the subset of N
∗

given by nod(t) = {λ} ∪ {iv | i ∈ [k] and v ∈ nod(ti)}. For a node u ∈ nod(t),
t/u denotes the subtree of t rooted at u, and t[[u ← s]] denotes the tree obtained
from t by replacing t/u with s ∈ T . Thus,

t/u =
{

t if u = λ

ti/v if u = iv, i ∈ [k]

and

t[[u ← s]] =
{

s if u = λ

f [t1, . . . , ti−1, ti[[v ← s]], ti+1, . . . , tk] if u = iv, i ∈ [k].

A (not necessarily finite) alphabet is a set Σ of symbols such that B ∩ Σ = ∅.
Given an alphabet Σ and a set T of trees, Σ(T) denotes the set of all trees
f [t1, . . . , tk] such that f ∈ Σ and t1, . . . , tk ∈ T for some k ∈ N. The set TΣ(T)
of all trees over Σ with subtrees in T is the smallest set of trees such that
T ∪ Σ(TΣ(T)) ⊆ TΣ(T). The set TΣ(∅) of trees over Σ is briefly denoted by TΣ .

A ranked alphabet is an alphabet Σ which is given as a (not necessarily dis-
joint) union Σ =

⋃
k∈N

Σ(k). A symbol in Σ(k) is said to be of rank k and may
be denoted by f (k) to indicate its rank. A ranked alphabet is called finite if only
finitely many of the Σ(k) are nonempty, and each of them is finite. If symbols
from ranked alphabets are used to build trees, we apply the additional restriction
that each occurrence of f (k) must have exactly k subtrees. Thus, in this case,

http://www.cs.umu.se/~johanna/algebra

An Algebra for Tree-Based Music Generation 175

Σ(T) is the set of all trees f [t1, . . . , tk] such that f (k) ∈ Σ for some k ∈ N, and
t1, . . . , tk ∈ T .

Throughout this paper, let U be a universe of symbols, where U ∩B = ∅. The
intuition behind U is that it is our supply of “ordinary” symbols. Symbols that
do not belong to U have an auxiliary character. Variables provide an example of
the latter: we let X be a countably infinite alphabet of variables, where X ∩U =
∅. Thus, as usual in the theories of term rewriting, tree languages, and tree
transformation, variables are just a special sort of symbols, rather than being
variables in the mathematical sense. In trees, variables will only appear as leaves,
i.e., they will be considered as symbols of rank 0. A mapping σ : X ′ → T , where
X ′ ⊆ X , is a substitution. For a tree t, tσ denotes the tree obtained from t by
simultaneously replacing every occurrence of x ∈ X ′ with σ(x). As a recursive
definition, xσ = σ(x) for all x ∈ X ′, and if t = f [t1, . . . , tl] with l > 0 or f /∈ X ′,
then tσ = f [t1σ, . . . , tlσ].

A term rewrite system is a set R of rules of the form l → r, where l, r ∈ T
are such that all variables in r occur in l as well. For trees s, t, there is a rewrite
step s →R t if there are a rule l → r in R, a node v ∈ nod(s) ∩ nod(t), and a
substitution σ, such that s/v = lσ and t = s[[v ← rσ]].

Regular tree grammars are defined as usual. Thus, such a grammar is a system
g = (N, Σ, R, S) consisting of a ranked alphabet N = N (0) of nonterminals,
where N ∩U = ∅, a ranked alphabet Σ ⊆ U of terminals, a set R of rules, and an
initial nonterminal S. The sets N , Σ, and R are required to be finite. Every rule
in R is of the form A → t, where A ∈ N and t ∈ TΣ(N). The language generated
by g, called a regular tree language, is given by L(g) = {t ∈ TΣ | S →∗

R t}.
As mentioned in the introduction, our general approach for generating music

is adopted from [Hög05]: a tree denoting a musical piece is generated by starting
with a very simple tree and then applying to it a sequence of macro and top-
down tree transducers, each of which is responsible for adding a specific musical
aspect. However, ordinary macro and top-down tree transducers are not ideal for
this purpose, because they have a finite input alphabet and cannot process input
trees that contain other symbols. Instead, we would like the transformation to
“step over” such symbols, at least if they are encountered in certain states. For
these reasons, we now introduce the so-called tolerant macro tree transducer.

Definition 1 (tolerant mt transducer). A tolerant macro tree transducer
(tmt transducer, for short) is a system mtt = (Σ, Σ′, Q, Qt, R, q0), where

– Σ, Σ′ ⊆ U are finite ranked alphabets, the input and output alphabets,
– Q with Q(0) = ∅ and Q ∩ U = ∅ is a ranked alphabet of states,
– Qt ⊆ Q is the set of tolerant states,
– R is a finite set of rules of the form

q [f [x1, . . . , xk], y1, . . . , ym] → t

with q ∈ Q(m+1), f (k) ∈ Σ for some k ∈ N, x1, . . . , xk, y1, . . . , ym ∈ X being
pairwise distinct, and t ∈ T , where the set T is recursively defined as

- yi ∈ T , for all i ∈ [m],

176 F. Drewes and J. Högberg

- g[t1, . . . , tl] ∈ T , for every g ∈ Σ′ of rank l and t1, . . . , tl ∈ T , and
- q′[xi, t1, . . . , tl] ∈ T for every q′ ∈ Q(l+1), i ∈ [k], and t1, . . . , tl ∈ T .

– q0 ∈ Q(1) is the initial state.

From the above definition, we obtain the tolerant top-down tree transducer (ab-
breviated ttd transducer) by considering the special case when Q = Q(1). Fur-
thermore, mt transducers and td transducers are a special case of tmt transducers
and ttd transducers, resp., by taking Qt = ∅.

Given an input tree t ∈ TU , a computation of mt t starts with q0 t and applies
the term rewrite rules in R until a tree in TU is reached. Whenever a symbol not
in Σ is reached in a tolerant state, this symbol is simply copied to the output.
Formally, this reads as follows.

Definition 2 (computed tree transduction). In what follows, let mtt =
(Σ, Σ′, Q, Qt, R, q0) be a tolerant mt transducer. For trees s, t ∈ TU∪Q, there is
a computation step s →mtt t if s →R∪R′ t, where

R′ = {q[f [x1, . . . , xk], y1, . . . , ym] →
f [q[x1, y1, . . . , ym], . . . , q[xk, y1, . . . , ym]] | q(m+1) ∈ Qt, f ∈ U \ Σ(k)} .

A tree t ∈ TU∪Q is a sentential tree (with respect to mtt) if q0 s →∗
mtt t for some

s ∈ TU . The tree transduction computed by mt t, called a tolerant mt transduc-
tion, is the mapping mt t : TU → ℘(TU) such that

mt t(s) = {t ∈ TU | q0 s →∗
mtt t}

for all s ∈ TU . For a set T ⊆ TU , we let mtt(T) =
⋃

{mtt(t) | t ∈ T }.

As usual, the tree transduction computed by mtt is considered to be a partial
function mtt : TU → TU if |mt t(t)| ≤ 1 for all t ∈ TU .

Let us return for a moment to Definition 1. The way the rules of an mt
transducer are defined allows for sentential trees with nested states. If the mt
transducer is deterministic1, then the way in which computation steps are made
does not matter: the output tree (if it exists at all) is completely determined by
the input tree. In the nondeterministic case, however, the input tree may yield
different sets of output trees, depending on the order in which the nested states
are processed. In [EV85], the following strategies are discussed.

– Innermost-Outermost (IO, for short) applies the rewriting rules bottom-up.
A state can only be rewritten when its direct subtrees, except the first,
consist exclusively of symbols in U .

– Outermost-Innermost (OI, when abbreviated) applies the rewriting rules
top-down. In other words, a state can only be rewritten when the path going
from the root to that state is labelled with symbols in U only.

– Unrestricted allows the rewriting rules to be applied in any order.
1 There do not exist two distinct rules with left-hand sides q[f [x1, . . . , xk], y1, . . . , ym]

and q[f [x′
1, . . . , x

′
k], y′

1, . . . , y
′
k], resp., i.e., the left-hand sides differ only in the naming

of variables.

An Algebra for Tree-Based Music Generation 177

As shown in [EV85], the translations realized by OI and the unrestricted mode
coincides. Let us now compare the IO and OI strategies at an intuitive level. In
an OI transduction, subtrees may be copied (by nonlinear rules) before they are
processed. Continuing the derivation, the copies can thus be turned into several
non-isomorphic subtrees in the output. In an IO transduction, a subtree is only
copied after it has been processed, and may thus yield a number of identical
subtrees in the output. Both the IO and the OI behaviour can be beneficial in
the generation of musical pieces. Whereas IO allows for regularity and a clear
structure, it is more convenient to use OI when we want to endow the generated
piece with a more spontaneous quality.

3 An Algebra for Music

In this section, we introduce the main contribution of the paper, the so-called
music algebra. The operations of this algebra can be used to assemble a musical
piece in a stepwise manner. Let us first summarise a few basics regarding music
that are needed for a better understanding of the elements of the music algebra.

We identify a musical piece with a sequence of notes. In general, a note is
characterised by its tone, length, accent, and timbre. The tone of a note is the
ratio between its frequency and that of a fixed reference note. Similarly, the
length of a note is measured relative to the length of the reference note. A note
whose duration is equal to that of the reference note, is a whole note, a note
whose duration is but half of that of the reference note is a half note, and so on.
Even accent is a relative property; a note is accented if it is played, for example,
louder than any surrounding note. The timbre of a note is the subjective quality
which lets us distinguish between instruments. For the sake of simplicity, we
disregard the accent and timbre of a note.

A scale is a set of tones, and just as there are an infinite number of tones, so are
there an infinite number of conceivable scales. However, only some of them are
used in practice. The most important of these is probably the chromatic scale,
which is constructed as follows: First a reference tone is ordained, which would
normally be the so-called a above middle c, an alias for 440 Hz (for convenience,
we henceforth restrict ourselves to chromatic scales built around this tone). By
doubling this pitch, the tone one octave higher is found, and by dividing it by
two, the tone one octave lower. The whole of the audible interval is split into
octaves, and every octave is divided into 12 tones, in such a way that the ratio
between two consecutive tones amounts to 21/12. The tones can thus be referred
to by integers: 0 refers to the reference tone, and for every tone t, t− 1 and t+1
refer to the next lower and higher tone, resp., in the chromatic scale. In other
words, in our setting, tone t has a frequency of 2t/12 · 440 Hz.

The music algebra, which we denote by M, is a many-sorted algebra whose
data domains are the sets Z, R

+, and P . While P , to be defined below, denotes
the set of all musical pieces, elements of Z are always interpreted as tones, and
elements of R

+ are always in one way or another related to time.

178 F. Drewes and J. Högberg

Definition 3 (note and musical piece). A note is a pair n = (t, l) ∈ Z× R
+

consisting of the tone t of length l. The set of all notes is denoted by N .
The set P of musical pieces is the set of all pairs P = (N, L) such that

– N ⊆ N ×R
+
0 is a finite set of played notes, where, for a played note (n, s) ∈

N , s is the point in time where n starts to be played;
– L ∈ R

+ is the length of the entire piece, with L ≥ s + l for all ((t, l), s) ∈ N .

Note that there are no pieces whose length is 0, and that a piece cannot end
before its last note has been played (owing to the requirement placed on L). In
the following, we may denote the components of a note n by tn and ln, resp.
Similarly, the components of a piece P may be denoted by NP and LP , resp.

We now define a number of operations on musical pieces. For this, an auxiliary
notation turns out to be useful. Given a set N of played notes and a mapping f
on played notes, we let N [[(n, s) �→ f(n, s)]] = {f(n, s) | (n, s) ∈ N}. Similarly, if
f is a mapping on notes, we let N [[n �→ f(n)]] = {(f(n), s) | (n, s) ∈ N}.

Now, consider pieces P = (N, L) and P ′ = (N ′, L′).

– length(P) = L returns the length of P .
– If N �= ∅, let q = max{s + ln | (n, s) ∈ N}, i.e., q is the point in time where

the last notes in P end. The highest tone at the end of P is returned by

highest(P) =
{

max{tn | (n, s) ∈ N and s + ln = q} if N �= ∅
0 otherwise.

(Using the operations defined below, this gives also access to the lowest tone
at the end of P and the highest and lowest tones at the beginning of P .)

– For every factor a ∈ R
+,

scale(P, a) = (N [[(n, s) �→ ((tn, a · ln), a · s)]], a · L)

scales P by the factor a.
– Inversion of all tones of notes in P is obtained by

inv(P) = (N [[n �→ (−tn, ln)]], L) .

– For every tone t ∈ Z,

raise(P, t) = (N [[n �→ (tn + t, ln)]], L)

raises every tone of notes in P by t.
– P is played backwards by

back(P) = (N [[(n, s) �→ (n, L − s − ln)]], L) .

– mute(P) = (∅, L) returns a silent piece having the same length as P .

An Algebra for Tree-Based Music Generation 179

– overlay(P, P ′) yields the overlay of P and P ′, given by

overlay(P, P ′) = (N ∪ N ′, max(L, L′)) .

For the sake of convenience, we extend overlay to any number of argu-
ments, i.e. for pieces P1, . . . , Pk (k ≥ 1),

overlay(P1, . . . , Pk) = overlay(P1, · · ·overlay(Pk−1, Pk) · · ·)
= (

⋃
i∈[k] NPi , maxi∈[k] LPi) .

– The concatenation of P and P ′ is given by

concat(P, P ′) = (N ∪ N ′[[(n, s) �→ (n, L + s)]], L + L′).

Similarly to overlay, concat is extended to any positive number of argu-
ments P1, . . . , Pk, i.e.

concat(P1, . . . , Pk) = concat(P1, · · ·concat(Pk−1, Pk) · · ·) .

– Finally, let S ⊆ Z be a finite nonempty set of tones. Then snapS(P) adjusts
all tones of notes in P to the nearest tone in S. Formally, for t ∈ Z, let
Δ(t) = mins∈S |t − s|, and let α(t) ∈ S be given by

α(t) =
{

t + Δ(t) if t + Δ(t) ∈ S

t − Δ(t) otherwise.

Thus, α(t) is the adjusted value of t, where we select the higher tone if both
t + Δ(t) and t − Δ(t) belong to S. Now, we let

snapS(P) = (N [[n �→ (α(tn), ln)]], L).

The music algebra M contains all of the operations defined above. In addition,
it contains the binary operations + and − (addition and subtraction, resp.) on
Z, as well as the binary operations +, ·, max, and min (addition, multiplication,
maximum, and minimum, resp.) on R

+. For the sake of better readability, when-
ever the binary operations +, −, and · occur in trees, we use the customary infix
notation. For example, a tree of the form +[t1, t2] is written as t1 + t2.

Let ΣM denote the ranked alphabet consisting of

– the operations of M, viewed as symbols of appropriate ranks, and
– all elements of Z ∪ R

+ ∪ N , viewed as constants, i.e. symbols of rank 0.
Here, every note n ∈ N is identified with the corresponding one-note piece
({(n, 0)}, ln).

For a well-typed tree t ∈ TΣ (where well-typedness is defined in the obvious way),
we let valM(t) denote its value, obtained by recursively evaluating subtrees and
applying the operation in the root of the tree to the results.

For the sake of convenience, our implementation extends M in such a way
that every symbol f (k) /∈ ΣM (k ≥ 1) is interpreted as concat

(k), i.e. as

180 F. Drewes and J. Högberg

k-ary concatenation of musical pieces. In particular, for k = 1, f is interpreted
as the identity, which is very convenient as it allows us to use such symbols as
markers in the generated trees, providing information for subsequent tree trans-
ducers, without interfering with the evaluation process. Note, however, that this
property of M is by no means essential for the power of the approach as it is
straightforward to add a tree transducer that removes such symbols.

Given any tree generator Γ , the pair G = (Γ,M) is called a tree-based music
generator. Here, a tree generator is any device Γ that defines a tree language
L(Γ) ⊆ TU ; the set of musical pieces generated by G is then

L(G) = {valM(t) | t ∈ L(Γ)}.

In the example discussed in the next section, the tree generator Γ is composed
of a regular tree grammar g and tolerant top-down and macro tree transducers
tt1, . . . , ttk. In this case, we define L(Γ) = ttk(· · · tt1(L(g)) · · ·).

4 Variations and Canons

This section describes how simple variations2 and canons can be generated. In a
variation, the subject is introduced together with an answer, an imitation of the
subject, and possibly a countersubject – a substantive figure that is meant to
sound well when played parallel to the subject. If there are several voices avail-
able, then the subject appears at some point in all of them. The piece concludes
after the subject (or answer) has appeared in the last voice. The subject can be
explored and developed by performing it in inversion (upside-down), retrograde
(back-to-front), diminution (with shorter note values) or augmentation (with
longer note values). The subject can also appear in stretto, meaning that it is
played as a canon, or as a false entry, in that it is fractioned or incomplete.

In our implementation, the subject is either generated by the regular tree
grammar Subject, or derived from a midi file. A suitable subject is a short
sequence of notes that is easy to recognise, contained within an octave, and
has a relatively simple rhythm. We do not make any assumptions about the
time measure, that is to say, the input completely determines the rhythm of
the generated piece, and is not modified to fit a standard meter. Since, in our
algebra, the length of a note can be any positive real number, this is not a
problem. However, as a consequence (mentioned in the introduction), our tree
transducers must be able to tolerate input symbols that are not known a priori.

Before explaining how the actual generation process works, let us discuss a
detail that illustrates the usefulness of ttd transducers. Suppose we want to
use a subject provided by the user. In a first step, we turn the correspond-
ing midi file into a tree tinit that evaluates to the subject. The symbols in this
tree are concat

(2), overlay
(2), and mute

(1) as internal nodes, and an un-
known set of notes as leaves. Some of the subsequent tree transducers work by
descending down the input tree until a note is reached, which is then modi-
fied by applying some operation. However, there is a problem with this. Once
2 We use this term to denote a toy fugue.

An Algebra for Tree-Based Music Generation 181

a computation has reached such a note, the only thing that can be done is
to tolerate the symbol, because it is unknown (unless the whole computation
is aborted). Therefore, we need a preprocessing step that replaces every note
n in tinit by note[n]. Thus, note is a marker signifying that a leaf will be
reached in the next step. Interestingly, the preprocessing can be implemented
by a ttd transducer. To see this, let Pre = (Σ, Σ′, {q, q′}, {q′}, R, q), where
Σ = {concat

(2),overlay
(2),mute

(1)}, Σ′ = Σ ∪ {note
(1)}, and

R = {qf [x1, . . . , xk] → f [t1, . . . , tk] | f (k) ∈ Σ and
ti ∈ {q[xi],note[q′[xi]]} for all i ∈ [k]}.

If we disregard the case where tinit is a single note, there is exactly one success-
ful computation for each input tree tinit. It descends down the tree in state q,
guessing nondeterministically when it has reached a note. At that point, it adds
the required occurrence of note and continues in state q′. Since there are no
rules at all for q′, an incorrect guess means that the computation will fail. This
also happens if a note is reached in state q, because q is not tolerant.

If we want to derive a variation on a subject, then we proceed as follows.
Regardless of whether the subject is grammatically derived or provided by the
user, we generate a template exposition. An exposition is basically a way in
which to organise a set of themes in time and over a number of voices, usually
ranging from Bass to Soprano. An example exposition is shown in Figure 1. The
rtg Subject & Exposition produces an output tree tsub & tmp of the form

tsub & tmp = concat[subject[tsub], exposition[ttmp]] ,

where tsub and ttmp are the tree representations of the subject and the exposition
template, respectively. The leaves of the latter are the symbols sub, ans, cnt, and
acc, which act as placeholders: the tree tsub & tmp is passed to the tmt transducer
Arrange, which derives from the subtree tsub an answer, a countersubject,
and an accompaniment and substitutes these for the placeholders. The answer
is the subject played in retrograde and raised by 7 tones, so tans is given by
raise[back[tsub], 7]. The countersubject is the an inverted version of the subject,
i.e. tcnt equals inv[tsub]. Furthermore, in both the answer and the countersubject
some notes are lengthened at the others’ expense (see below). This is also done
to in the accompaniment, which is basically a simplified version of the subject.

Soprano subject countersubject
Alto answer countersubject
Tenor subject countersubject
Baritone answer
Bass accompaniment accompaniment accompaniment

Fig. 1. One possibility to weave a musical piece around a subject

As mentioned in the introduction, the example has been implemented in the
system Treebag. The declaration of Arrange in Treebag is listed in Figure 2.

182 F. Drewes and J. Högberg

generators.tmtTransducer(“Arrange”):
(

{concat : 2, sub : 0, ans : 0, cnt : 0, acc : 0},
{#include(../signature)},
{INI : 1, ARR : 5, SUB : 1, ANS : 1, CNT : 1, ACC : 1, LUT : 1, EXT : 1},
{ARR : 5, LUT : 1, EXT : 1},
{
INI[concat[x1, x2]] → ARR[x2, SUB[x1], ANS[x1], CNT[x1], ACC[x1]],

SUB[subject[x1]] → LUT[x1],
ANS[subject[x1]] → raise[back[EXT[x1]], 7],
CNT[subject[x1]] → inv[EXT[x1]],
ACC[subject[x1]] → EXT[x1],

ARR[sub, y1, y2, y3, y4] → y1,
ARR[ans, y1, y2, y3, y4] → y2,
ARR[cnt, y1, y2, y3, y4] → y3,
ARR[acc, y1, y2, y3, y4] → y4,
ARR[concat[x1, x2], y1, y2, y3, y4] →

concat[ARR[x1, y1, y2, y3, y4], ARR[x2, y1, y2, y3, y4]],

LUT[concat[x1, x2]] → concat[LUT[x1], LUT[x2]],

EXT[concat[x1, x2]] → concat[EXT[x1], EXT[x2]],
EXT[concat[x1, x2]] → scale[

LUT[x1],
(length[LUT[x1]] + length[LUT[x2]])/length[LUT[x1]]

]
}, INI)

Fig. 2. The declaration of the tmt transducer Arrange

The first four components are: the input signature, the output signature, the
set of states, and the set of tolerant states. The state names INI, ARR, SUB,
ANS, CNT, ACC, LUT, and EXT abbreviate initial state, arrange subjects, subject,
answer, countersubject, accompaniment, leave untouched, and extend note value,
respectively. Out of these states, only ARR, EXT, and LUT are tolerant.

The fifth component is the set of rewrite rules. The first of these rules is
illustrated in Figure 3. Its purpose is to initiate the rewriting of the second
subtree, i.e. the exposition template, while simultaneously turning the subject
into three themes and an accompaniment. As mentioned earlier, we want to
lengthen some of the notes in the accompaniment, but not all of them. When,
during the generation of the accompaniment, a node of rank two labelled concat

is come across, we find that there are two applicable rules: one which leaves the
local configuration untouched and simply proceeds downwards, and one which
lengthens the notes found in the first subtree and discards those in the second.
Using a feature of Treebag that allows to add weights to the rules, the first of
these can be made twice as likely for application as the second. This decreases
the risk of ending up with an accompaniment that is but a single long note. The

An Algebra for Tree-Based Music Generation 183

INI

concat

tsub
ttmp

sub

sub

acc

cnt

acc

→

0
BB@

, , , ,

1
CCA

ARR

ttmp

sub

sub

acc

cnt

acc

SUB

tsub

ANS

tsub

CNT

tsub

ACC

tsub

Fig. 3. A pictorial representation of the first rule in the tmt transducer Arrange (see
Fig. 2)

sixth and last component is the initial state, in this case INI. The output from
arrange is the tree texp.

If texp is interpreted as a piece of music, i.e. valM(texp) is played, then it is
very likely to contain dissonances, as the theme is played against itself both
in retrograde and inversion. To clear these, and to add a sense of movement,
we wish to label the tree with chords in such a way that when the assigned
chords are read left-to-right, they appear in accordance with some common chord
progression. If this progression can be expressed as a directed graph G, in which
the individual chords are the nodes, then the labelling can be done by a ttd
transducer Progression that operates along the following principle.

Its states are tuples of the form 〈c, c′〉, where c and c′ are chords. We choose
〈cs, ce〉 as the initial state if we wish the progression to start with cs and end
with ce. The rules of Progression can be divided into two types, which develop
and settle the progression, respectively. A rule

〈c, c′〉[concat[x1, x2]] → concat[〈c, c′′〉[x1], 〈c′′, c′〉[x2]]

is included if there is a path from c to c′ in G that passes through c′′, and

〈c, c′〉[concat[x1, x2]] → snapĉ[concat[P[x1], P[x2]]]

184 F. Drewes and J. Högberg

is included if the distance from c to c′ in G is less or equal to one. Here, P is an
auxiliary state that simply copies the subtree below it to the output, and the
only state that is tolerant with respect to overlay, concat and note. Since
the refinement of the progression cannot proceed below these symbols, we know
that each chord is represented by at least one note, and that no two chords are
played in parallel. If every state was tolerant, then this could not be attained.

In the second rule above, ĉ is the closure of the notes in c under transposition
by an octave.3 This assures that the local notes belong to ĉ, and that the com-
plete note sequence respects the chosen chord progression. For a more detailed
discussion of how chord progressions are modelled, see [Hög05].

When we generate a canon, we begin as we did for variations: a subject is
either derived by a regular tree grammar, or extracted from midi data. Copies
of this subject are then arranged over four voices by the ttd transducer Canon,
and this is done in such a way that there are frequent overlaps and many false
entries. Because of the overlaps, it is now easier to generate one voice at a time,
and then combine them using overlay, rather than generating one measure at
a time, and then concatenating the results. This can be done using an extended
version of the rule

S[subject[x1]] →
overlay[

raise[
concat[mute[H[x1]], P[x1],mute[H[x1]],mute[T[x1]]],
12],

raise[
concat[P[x1], H[x1], P[x1]],
24],

raise[
concat[mute[H[x1]],mute[H[x1]], P[x1],mute[T[x1]]],
36]].

The two states H and T select the first and the second half, respectively, of
the subtree below them. For this approach to yield a nice result, the tree tsubj
must not be comb-like.

To make the generated piece more interesting to listen to, we end the genera-
tion process by adding various ornaments. An ornament is a musical embellish-
ment that is not part of the overall melody, but rather an added decoration. An
example is the mordent: a single rapid alteration between a note of the melodic
line, and the note immediately above it. The ornaments are added by the ttd
transducer Ornament, which forms a mordent using the rule

S[note[x1]] → scale[
concat[S[x1],raise[S[x1], 1], S[x1]],
1
3 · length[S[x1]]].

3 In fact, strictly speaking, we cannot use ĉ because it is infinite. Therefore, it is
replaced with its restriction to the audible range. This has the additional advantage
that no tones outside this range will be generated.

An Algebra for Tree-Based Music Generation 185

Fig. 4. A screenshot of Treebag with the Variations worksheet loaded

Fig. 5. A variation generated in above worksheet, here shown as a time/frequency
diagram

186 F. Drewes and J. Högberg

The generated tree is interpreted by the algebra described in Section 3 as a
piece of music, which can then be performed using the jMusic library [SB07].
A screenshot of Treebag with the Variations worksheet loaded is found in
Figure 4, and a musical piece generated in this worksheet is shown in Figure 5.

5 Conclusion

In this paper, we have continued the work that was started in [Hög05]. In par-
ticular, we have presented an algebra for the tree-based generation of music.
Moreover, we have shown that the generation process can make use of (tolerant)
macro tree transducers in a natural manner, thus providing a greater flexibility
and generative power than what can be achieved by using top-down tree trans-
ducers only. The motivation behind this work is to investigate how far typical
structures that appear in musical pieces can be captured using the limited means
of the tree-based formalism, as opposed to using Turing-complete formalisms for,
e.g., imitating a particular human composer. Naturally, the discussion of the ex-
ample in the previous section could not reveal much detail without becoming
lengthy and repeating much of what has been said in [Hög05]. Readers who want
to explore the details are invited to download the system and the example from
http://www.cs.umu.se/∼johanna/algebra.

Clearly, more (and more sophisticated) examples are needed in order to un-
derstand whether the operations of the algebra proposed in this paper are really
appropriate. In fact, it will probably turn out that different types of music re-
quire different algebras and maybe also different types of tree generators. This
situation is well known in the area of picture generation, where each choice con-
sisting of a class of tree generators and a class of picture algebras results in a
specific type of picture generator (see [Dre06]).

The problem of whether the concepts presented here can be used to produce
“nice” or “interesting” music remains open. We do not expect this to be possible
in a fully automatic manner, because we do not believe “nice music” to be a
formally definable concept. However, our example shows that there are certain
structural rules that formal grammatical systems can take care of. Thus, it is
conceivable that a system similar to the one implemented in Treebag, though
considerably more sophisticated, could become an interesting interactive tool for
a human composer.

The current implementation is restricted in the sense that user-provided sub-
jects can only be combined with a fixed (or finite number of) exposition tem-
plates rather than with an infinite set of grammatically derived templates. To
remove this restriction, we need an implementation of the tolerant macro tree
transducer which takes as input a sequence of trees t1, . . . , tk and, therefore, com-
putes a mapping mtt : T k

U → ℘(TU). This can be achieved by replacing the initial
state in such a tree transducer by an axiom of the form q1[t1, q2[t2], · · · , qk[tk]],
where q1, . . . , qk are states.

Let us finally point out that the concept of tolerant macro tree transducers
may be of independent interest, as it may be useful in other applications in

http://www.cs.umu.se/~johanna/algebra

An Algebra for Tree-Based Music Generation 187

which unknown symbols can occur. Thus, it could be worthwhile to study the
theoretical properties of this type of tree transducer by, for example, comparing
it with ordinary macro tree transducers.

Acknowledgement. We thank Albert Gräf and Carl Rehnberg for providing
us with references regarding computer-generated music. The implementation of
mt transducers in Treebag, from which the one of tmt transducers was derived
by a few simple changes, has been made by Karl Azab (see also [Aza05]).

References

[Ame89] Ames, C.: The Markov process as a compositional model: a survey and
tutorial. Leonardo 22(2), 175–187 (1989)

[Aza05] Azab, K.: Macro tree transducers in Treebag. Master thesis, Department
of Computing Science, Ume̊a University (2005), http://www.cs.umu.se/
education/examina/Rapporter/KarlAzab.pdf

[Bar83] Baroni, M.: The concept of musical grammar. Music Analysis 2(2), 175–
208 (1983)

[BDPV94] Bresin, R., Poli, G.D., Vidolin, A.: A neural networks based system for
automatic performance of musical scores. In: Proc. 1993 Stockholm Music
Acoustic Conference, Royal Swedish Academy of Music, Stockholm, pp.
74–78 (1994)

[BELM04] Burraston, D., Edmonds, E., Livingstone, D., Miranda, E.R.: Cellular au-
tomata in MIDI-based computer music (2004)

[Bha88] Bharucha, J.: Neural net modeling of music. In: Proc. First Workshop on
Artificial Intelligence and Music, American Association for AI, pp. 173–182
(1988)

[Cha03] Chapel, R.H.: Realtime algorithmic music systems from fractals and
chaotic functions: toward an active musical instrument. PhD thesis, Univ.
Pompeu Fabra, Barcelona (2003)

[CV01] Chai, W., Vercoe, B.: Folk music classification using hidden Markov mod-
els. In: Proc. Int. Conference on Artificial Intelligence (2001)

[Dre06] Drewes, F.: Grammatical Picture Generation – A Tree-Based Approach.
Texts in Theoretical Computer Science. An EATCS Series. Springer, Hei-
delberg (2006)

[Eng97] Engelfriet, J.: Context-free graph grammars. In: Handbook of Formal Lan-
guages. Beyond Words, vol. 3, pp. 125–213. Springer, New York (1997)

[EV85] Engelfriet, J., Vogler, H.: Macro tree transducers. Journal of Computer
and System Sciences 31(1), 71–146 (1985)

[FV98] Fülöp, Z., Vogler, H.: Syntax-Directed Semantics: Formal Models Based
on Tree Transducers. Monographs in Theoretical Computer Science. An
EATCS Series. Springer, Heidelberg (1998)

[GS97] Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages. Beyond Words, ch. 1, vol. 3, pp.
1–68. Springer, Heidelberg (1997)

[HG91] Horner, A., Goldberg, D.E.: Genetic algorithms and computer-assisted mu-
sic composition. In: Proc. Fourth Int. Conference on Genetic Algorithms,
San Diego, CA, pp. 437–441 (1991)

http://www.cs.umu.se/penalty z@ {}education/penalty z@ {}examina/penalty z@ {}Rapporter/penalty z@ {}KarlAzab.pdf
http://www.cs.umu.se/penalty z@ {}education/penalty z@ {}examina/penalty z@ {}Rapporter/penalty z@ {}KarlAzab.pdf

188 F. Drewes and J. Högberg

[Hög05] Högberg, J.: Wind in the willows – generating music by means of tree trans-
ducers. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS,
vol. 3845, pp. 153–162. Springer, Heidelberg (2006)

[Jac95] Jacob, B.: Composing with genetic algorithms. In: Proc. ICMC, pp. 452–
455 (1995)

[Jur06] Jurish, B.: Music as a formal language. In: Zimmer, F. (ed.) Bang | Pure
data, Wolke Verlag (2006)

[Moo72] Moorer, J.A.: Music and computer composition. Commun. ACM 15(2),
104–113 (1972)

[Moz94] Mozer, M.: Neural network music composition by prediction: exploring the
benefits of psychoacoustic constraints Connection-Science 6(2), 247–
280 (1994)

[Pru86] Prusinkiewicz, P.: Score generation with L-systems. In: Berg, P. (ed.) Proc.
ICMC, Royal Conservatory, The Hague, Netherlands, vol. 1, pp. 455–457
(1986)

[SB07] Sorensen, A., Brown, A.: Introduction to jMusic. Internet resource. (Ac-
cessed 27 Feb 2007), available at http://jmusic.ci.qut.edu.au/

[SXK04] Shao, X., Xu, C., Kankanhalli, M.S.: Unsupervised classification of music
genre using hidden Markov model. In: Proc. ICME, pp. 2023–2026 (2004)

[Tod91] Todd, P.M: A connectionist approach to algorithmic composition. Com-
puter Music Journal 13(4), 27–43 (1991)

[TON06] Tojo, S., Oka, Y., Nishida, M.: Analysis of chord progression by HPSG.
In: AIA’06: Proc. 24th IASTED International Conference on Artificial In-
telligence and Applications, pp. 305–310. ACTA Press (2006)

[Vis04] Visell, Y.: Spontaneous organisation, pattern models, and music. Organ-
ised Sound (2004)

[WS05] Worth, P., Stepney, S.: Growing music: musical interpretations of L-
systems. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drech-
sler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D.,
Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 545–550.
Springer, Heidelberg (2005)

http://jmusic.ci.qut.edu.au/

Aperiodicity in Tree Automata�

Zoltán Ésik1,2 and Szabolcs Iván1

1 Dept. of Computer Sci. Univ. Szeged, Hungary
2 GRLMC, Rovira i Virgili University, Tarragona, Spain

Abstract. We define and compare several different notions of aperiodic-
ity in tree automata. We also relate these notions to the cascade product
and logical definability of tree languages.

1 Introduction

By the well-known theorem of McNaughton and Papert [12], a word language is
definable in the first order logic of linear order if and only if its syntactic semi-
group is aperiodic, i.e., a finite semigroup containing no nontrivial group. The
notion of syntactic semigroup was generalized to trees by Thomas in [16] giving
rise to a notion of aperiodicity for tree automata, called context aperiodicity
below. It is known that the minimal automaton of any tree language definable
in the first order logic of finite trees with both the successor relations and the
usual order relation is context aperiodic, cf. [16]. On the other hand, there exist
regular tree languages with context aperiodic minimal automata which are not
definable in first order logic, cf. [11,16].

In this paper we define a hierarchy of aperiodicity notions for tree automata
by considering n-tuples of nontrivial trees (i.e., trees or terms different from the
variables) in n variables and the semigroup of vector-valued term functions in-
duced by them. We say that a (finite) tree automaton is n-aperiodic for some
integer n > 0 if the semigroup of all such term functions is aperiodic. Moreover,
we say that a tree automaton is strongly aperiodic if it is n-aperiodic for each
n. We show that n-aperiodic tree automata form a proper hierarchy, and the
class of 1-aperiodic tree automata is properly contained in the class of context
aperiodic tree automata. We also show that the class of strongly aperiodic tree
automata properly contains the class of definite tree automata. Moreover, we
establish that each of these classes is a generalized cascade variety, i.e., it is
closed under the generalized cascade product (wreath product) and taking sub-
automata and homomorphic images. We also study the complexity of deciding
whether a tree automaton belongs to these classes. In particular, we establish a
P-time algorithm for testing strong aperiodicity. We also provide an extension
of the above aperiodicity notions which is motivated by the Krohn-Rhodes de-
composition theory [4] and study a modified version of aperiodicity obtained by
� Research supported by the AUTOMATHA project of ESF and the National Foun-

dation for Scientific Research of Hungary, grant T466886.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 189–207, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

190 Z. Ésik and S. Iván

taking polynomial functions instead of term functions. Finally, we relate aperi-
odicity to logic.

Notation. For each n ≥ 0, we let [n] denote the set {1, . . . , n}. When A is a
set, P (A) denotes its power set.

2 Aperiodicity in Tree Automata

In this section we define several notions of aperiodicity for tree automata and
discuss the basic relationship between them. We start with some preliminary
definitions. For a more detailed exposition, see [8].

A rank type R is a nonempty subset of the nonnegative integers. A ranked
alphabet of rank type R is a finite set Σ which is the disjoint union of sets Σn,
n ≥ 0, such that Σn is not empty if and only if n ∈ R. The elements of Σn are
called function symbols or operation symbols of rank n. Symbols of rank 0 are also
called constant symbols. We will consider finite Σ-algebras A = (A, (σA)σ∈Σ),
called Σ-tree automata. Here, for each σ ∈ Σn, σA is a function An → A, the
interpretation of σ in A. The elements of A will be called states. Throughout the
paper, the rank type R is fixed, but the ranked alphabet Σ may vary. For ease
of notation, unless otherwise specified, the underlying set of a tree automaton
denoted by a boldface letter will be denoted by the same letter in italics.

Let X = {x1, x2, . . .} denote a fixed countably infinite set of variables, and for
each n, let Xn = {x1, . . . , xn}. The set of Σ-terms (or Σ-trees, see below) over
Xn will be denoted TΣ(Xn), or just TΣ, when n = 0. Terms different from the
variables are called nontrivial. A Σ-context (or just context, if Σ is understood)
is a term t ∈ TΣ(X1) containing exactly one occurrence of x1. A nontrivial
context is a context which is a nontrivial term. Note that there is a nontrivial
context if and only if 1 ∈ R, or 0 ∈ R and R contains an integer > 1. Sometimes
it will be convenient to think of a term t ∈ TΣ as a finite directed ordered and
rooted tree whose vertices are labeled in Σ such that the out-degree of a vertex
is n if and only if its label is in Σn. Thus, the vertices labeled in Σ0 are leaves.
We will say that vertex v is the ith successor of vertex u if the ith out-edge of u
connects u to v. Moreover, we say that v is a descendant of u, denoted u < v, if
there is a nonempty path from u to v. The subtree of a tree rooted at a vertex
v is determined by v and its descendants.

When A is a Σ-tree automaton, each t ∈ TΣ(Xn) induces a term function
An → A. Term functions induced by nontrivial trees will be called proper. By
extension, each m-tuple t = (t1, . . . , tm) of trees ti ∈ TΣ(Xn) induces a vector-
valued term function tA = 〈tA

1 , . . . , tA
m〉 : An → Am, which is the target tupling

of the m functions tA

i : An → A, i = 1, . . . , m. When each tA

i is proper, tA is also
called proper. It is clear that for each n, the proper term functions An → An

form a finite semigroup, denoted Sn(A). In this semigroup, product is function
composition. The subsemigroup of S1(A) consisting of the term functions induced
by the nontrivial contexts will be denoted C(A).

Aperiodicity in Tree Automata 191

For all unexplained notions from universal algebra and tree automata we refer
to [8,9]. Recall from [4] that S divides T for finite semigroups S and T when S
is a homomorphic image of a subsemigroup of T .

Proposition 1. When n ≤ m, Sn(A) divides Sm(A).

Proof. First note that since n ≤ m, we have TΣ(Xn) ⊆ TΣ(Xm). Consider
the functions f = 〈tA

1 , . . . , tA
m〉 ∈ Sm(A) such that for each i ∈ [n], ti is a

nontrivial term in TΣ(Xm) not containing any occurrence of a variable xj with
j > n. These functions form a subsemigroup of Sm(A). Moreover, Sn(A) is a
homomorphic image of T , one homomorphism being the map that takes any f
of the above form to 〈tA

1 , . . . , tA
n〉, where now each ti is considered as a tree in

TΣ(Xn) inducing a function An → A. �
The following fact is clear:

Proposition 2. C(A) is a subsemigroup of S1(A). When R = {1}, C(A) =
S1(A).

Recall from [4] that a finite semigroup S is called aperiodic if it contains no
nontrivial group, or equivalently, when there exists an integer k ≥ 1 such that
sk = sk+1, for all s ∈ S.

Definition 1. We call a Σ-tree automaton A n-aperiodic for some n ≥ 1 if the
semigroup Sn(A) is aperiodic. By extension, we call A strongly aperiodic if it is
n-aperiodic for each n ≥ 1.

Definition 2. We call a Σ-tree automaton A context aperiodic if C(A) is
aperiodic.

The notion of context aperiodicity was introduced by Thomas in [16] under the
name aperiodicity. In the “classical case” R = {1}, context aperiodicity and
1-aperiodicity coincide with aperiodicity, or counter-freeness, see below.

Example 1. In case of semigroups, the ranked alphabet contains a single binary
symbol. Since there are no proper contexts, every finite semigroup is context
aperiodic. We show that a finite semigroup S is 1-aperiodic if and only if its
exponent is 1 or 2. (Recall that the exponent of S is the least positive integer d
such that sk = sk+d for all s ∈ S.)

Suppose first that S is a finite semigroup which is 1-aperiodic. For each integer
k > 1, consider the term xk

1 = x1 ·(x1 · . . . ·(x1 ·x1) . . .) in the variable x1. Since S

is 1-aperiodic, there exists some integer m such that the equation xkm+1

1 = xkm

1
holds in S. This implies that d is a divisor of km+1 −km = km(k−1). Thus, each
prime appearing in the prime decomposition of d must divide k(k − 1). Since
this holds for all k > 1, we conclude that d = 1 or d is a power of 2. But when
k = 3, then d must divide 3m · 2 for some m, so that the exponent is 1 or 2.

When the exponent is 1, S is aperiodic. It is then clear that S is 1-aperiodic.
Assume that the exponent is 2. Then there is an integer n such that sn+2 = sn

192 Z. Ésik and S. Iván

for all s ∈ S. Consider any term xk
1 , where k ≥ 2. When km ≥ n, we have that

skm+1
= skm

for all s ∈ S. This means that xkm

1 and xkm+1

1 induce equal term
functions. It follows that S is 1-aperiodic.

Example 2. Recall that a semigroup S is nilpotent if there exist 0 ∈ S and
an integer n > 0 such that Sn = 0. It is clear that any finite nilpotent semi-
group is strongly aperiodic. We show that every 2-aperiodic finite semigroup S
is nilpotent. To this end, first note that the exponent of S is 1 or 2 by the above
argument. But if the exponent is 2, then there exist some s ∈ S and n > 0 such
that sn = sn+2 but sn 	= sn+1. Now both sn and sn+1 are fixed points of the
term function induced by x3

1. Thus, by Proposition 5 below, S is not 2-aperiodic.
We conclude that the exponent of S is 1, i.e., S is aperiodic, i.e., there exists
n > 0 such that xn+1 = xn holds in S. Consider now the term vector (x2

2, x
2
1).

Since S is 2-aperiodic, there exists some k such that 2k ≥ n and x2k

1 = x2k+1

2

holds in S. But since 2k ≥ n, x2k

1 = xn
1 and x2k+1

2 = xn
2 , so that xn

1 = xn
2 also

holds. Now this implies that S has a single idempotent e and e = sn for each
s ∈ S. But then since xyn = xxn = xn and ynx = xn also hold, Se = eS = e.
Since all long enough products over S have a factorization which contains an
idempotent, it follows that S is nilpotent.

Since any divisor of an aperiodic semigroup is aperiodic, from Propositions 1
and 2 we have:

Proposition 3. Every 1-aperiodic tree automaton is context aperiodic, and when
n ≤ m, every m-aperiodic tree automaton is n-aperiodic.

When A is a finite set and S is a semigroup of functions A → A, then the
pair (A, S) is called a transformation semigroup, cf. [4]. The (left) action of S
on A is defined by sa := s(a), for each a ∈ A and s ∈ S. A transformation
semigroup (A, S) is called counter-free when there exists no s ∈ S which induces
a nontrivial (cyclic) permutation of a subset of A. It is well-known that S is
aperiodic if and only if (A, S) is counter-free. Note that for each n, (An, Sn(A))
is a transformation semigroup as is (A, C(A)).

Proposition 4. A Σ-tree automaton A is n-aperiodic if and only if (An, Sn(A))
is counter-free. Moreover, it is context aperiodic if and only if (A, C(A)) is
counter-free.

For later use we prove:

Proposition 5. For any integer n > 0, 2n-aperiodic tree automaton A and
proper term function f : An → An it holds that f has at most one fixed point.

Proof. Let n > 0 be an integer, A a 2n-aperiodic tree automaton, t1, . . . , tn ∈
TΣ(Xn) nontrivial trees and (a1, . . . , an), (b1, . . . , bn) ∈ An two fixed points of
f = 〈tA

1 , . . . , tA
n〉. We have to show that ai = bi for all i ∈ [n].

Aperiodicity in Tree Automata 193

For any i ∈ [n] let si denote the tree we get from ti by replacing each occur-
rence of xj by xn+j , for each j ∈ [n] (so we add n to the index of each variable).
Now the proper term function

f ′ = 〈sA

1 , . . . , sA

n, tA

1 , . . . , tA

n〉 : A2n → A2n

satisfies both

f ′(a1, . . . , an, b1, . . . , bn) = (b1, . . . , bn, a1, . . . , an)

and
f ′(b1, . . . , bn, a1, . . . , an) = (a1, . . . , an, b1, . . . , bn).

Since A is 2n-aperiodic, (a1, . . . , an, b1, . . . , bn) = (b1, . . . , bn, a1, . . . , an), hence
ai = bi for all i ∈ [n]. �

Proposition 6. Suppose A is a finite tree automaton which is not n-aperiodic
for the integer n > 0. Then there exists a proper term function f : An → An

that has at least two different fixed points.

Proof. If A is not n-aperiodic, then there exist a proper term function f : An →
An and a subset B ⊆ An with k > 1 elements such that the restriction of f to
B is a cyclic permutation of B. But then each element of B is a fixed point of
the proper term function fk. �

Corollary 1. A tree automaton A is strongly aperiodic if and only if for each
n > 0, no proper term function An → An has two or more fixed points.

Remark 1. We can show that A is strongly aperiodic iff no proper term function
An → An has two or more fixed points when n = |A|2.

3 Aperiodicity and the Cascade Product

Let A be a Σ-tree automaton, B a Δ-tree automaton and α = {αn : n ∈ R}
a collection of functions, where for each n ∈ R, αn maps An × Σ to the set
of all nontrivial trees in TΔ(Xn). Then the generalized cascade product A ×α B

is defined as the Σ-algebra on the set A × B such that for any σ ∈ Σn and
(a1, b1), . . . , (an, bn) ∈ A × B,

σA×αB((a1, b1), . . . , (an, bn)) = (σA(a1, . . . , an), tB(b1, . . . , bn))

where t = αn(a1, . . . , an, σ). When the range of each αn only contains trees of the
form δ(x1, . . . , xn), where δ ∈ Δn, then we call the product a cascade product.

Remark 2. Note that the direct product is a special case of the cascade product.
When A ×α B is a cascade product, we may view each αn as a function An ×
Σn → Δn.

194 Z. Ésik and S. Iván

Remark 3. The generalized cascade product can be defined in terms of the cas-
cade product. We say that a Δ-tree automaton B

′ is a derived automaton of
a Δ-tree automaton B if B and B

′ have the same set of states and each basic
operation δB

′
is a proper term function of B. Any generalized cascade product

A ×α B is a cascade product A ×β B
′ for some derived automaton B

′ of B and
for some β.

Definition 3. We say that a nonempty class of tree automata is a (generalized)
cascade variety if it is closed under taking subautomata, homomorphic images,
and the (generalized) cascade product.

Remark 4. A cascade variety is a generalized cascade variety if and only if it is
closed under derived automata.

In the rest of this section we show that for each n > 0, the class of all n-aperiodic
tree automata is a generalized cascade variety. Hence, the class of all aperiodic
tree automata is also a generalized cascade variety.

The following fact is clear.

Lemma 1. Let n > 0 be an integer and A an n-aperiodic tree automaton. Then
any subautomaton or homomorphic image of A is also n-aperiodic.

Before proving that taking generalized cascade product also preserves
n-aperiodicity, we make the following observation:

Lemma 2. Let A be a Σ-tree automaton, B a Δ-tree automaton and C = A×αB

a generalized cascade product of A and B. Then for any integer n ≥ 0, (nontriv-
ial) tree t ∈ TΣ(Xn) and states a1, . . . , an ∈ A there exists a (nontrivial) tree
s ∈ TΔ(Xn) such that

tC
(
(a1, b1), . . . , (an, bn)

)
=

(
tA(a1, . . . , an), sB(b1, . . . , bn)

)

for any (a1, b1), . . . , (an, bn) ∈ C.

Lemma 3. Let n > 0 be an integer, A an n-aperiodic Σ-tree automaton, B an
n-aperiodic Δ-tree automaton, and C = A ×α B a generalized cascade product of
A and B. Then C is also n-aperiodic.

Proof. We know that there exist integers NA and NB such that fNA = fNA+1

and gNB = gNB+1 for all proper term functions f : An → An and g : Bn → Bn

of A and B, respectively. We show that this implies that hNA+NB = hNA+NB+1

for all proper term functions h : (A × B)n → (A × B)n of C.
Let t = (t1, . . . , tn) be an n-tuple of nontrivial trees in TΣ(Xn). Let us

denote by ((a′
1, b

′
1), . . . , (a

′
n, b′n)) the n-tuple (tC)NA((a1, b1), . . . , (an, bn)). Ap-

plying Lemma 2 to the trees (t1, . . . , tn) and the states a′
1, . . . , a

′
n ∈ A we

get that there exist nontrivial trees s1, . . . , sn ∈ TΔ(Xn) such that for any
(a′

1, x1), . . . , (a′
n, xn) ∈ C the value of tC((a′

1, x1), . . . , (a′
n, xn)) can be written as

(
(tA

1 (a′
1, . . . , a

′
n), sB

1 (x1, . . . , xn)), . . . , (tA

n(a′
1, . . . , a

′
n), sB

n(x1, . . . , xn))
)
.

Aperiodicity in Tree Automata 195

From the definition of a′
1, . . . , a

′
n we get that tA

i (a′
1, . . . , a

′
n) = a′

i for all i ∈ [n],
so

tC((a′
1, x1), . . . , (a′

n, xn)) =
(
(a′

1, s
B

1(x1, . . . , xn)), . . . , (a′
n, sB

n(x1, . . . , xn))
)
.

Iterating this from (a′
1, b

′
1), . . . , (a

′
n, b′n) it follows that for any k ≥ 0 we can write

(tC)k((a′
1, b

′
1), . . . , (a′

n, b′n)) as

(
(a′

1, (s
B

1)k(b′1, . . . , b
′
n)), . . . , (a′

n, (sB

n)k(b′1, . . . , b
′
n))

)
.

But we know that (sB
i)NB = (sB

i)NB+1 holds for all i ∈ [n]. Summing up we get
the following equality:

(tC)NA+NB ((a1, b1), . . . , (an, bn))
= (tC)NB ((a′

1, b
′
1), . . . , (a

′
n, b′n))

=
(
(a′

1, (s
B

1)NB (b′1, . . . , b
′
n)), . . . , (a′

n, (sB

n)NB (b′1, . . . , b
′
n))

)

=
(
(a′

1, (s
B

1)NB+1(b′1, . . . , b
′
n)), . . . , (a′

n, (sB

n)NB+1(b′1, . . . , b
′
n))

)

= (tC)NB+1((a′
1, b

′
1), . . . , (a

′
n, b′n))

= (tC)NA+NB+1((a1, b1), . . . , (an, bn)),

so C is indeed n-aperiodic. �
For each n, let SApern denote the class of all n-aperiodic Σ-tree automata,
where Σ ranges over all ranked alphabets (of rank type R). Thus, SAper =⋂

n≥1 SApern is the class of all strongly aperiodic tree automata. Moreover, let
CAper denote the class of all context aperiodic tree automata. From the above
facts we get the following:

Theorem 1. For any integer n > 0, SApern is a generalized cascade variety.
Hence, SAper is also a generalized cascade variety.

In a similar way, we have:

Theorem 2. CAper is a generalized cascade variety.

A Σ-tree automaton is called definite [10] if there exists an integer k ≥ 0 such
that tA = sA whenever t, s ∈ TΣ(Xn) agree up to “depth k”. We let D denote
the class of definite tree automata.

Corollary 2. D ⊆ SAper.

Proof. It was shown in [5] that D is the least cascade variety containing the two-
state Σ-tree automaton D0 such that Σn contains two symbols for each n ∈ R,
inducing respectively the two constant valued operations in n variables. It is
easy to check that D0 is strongly aperiodic. �

196 Z. Ésik and S. Iván

4 Strict Containments

By Propositions 1, 2 and Corollary 2,

CAper ⊇ SAper1 ⊇ SAper2 ⊇ . . . ⊇ SAper ⊇ D (1)

is a decreasing chain. In this section we prove that when R contains an integer
> 1, then each of the containments in (1) is strict. But first we treat the case
when R = {1} or R = {0, 1}. (The case R = {0} is trivial.)

Proposition 7. When R = {1} or R = {0, 1}, it holds that

CAper = SAper1 ⊃ SAper2 = SAper = D.

Proof. So let R = {1} or R = {0, 1}. The first equality is clear. We also know
that SAper ⊇ D. If we can show that SAper2 ⊆ D, then it follows that
SAper2 = SAper = D. Moreover, SAper1 ⊃ SAper2 since there exists a
counter-free automaton which is not definite.

To prove that SAper2 ⊆ D, suppose that A is not definite. In the classical
case, i.e., when R = {1}, it is known that A has a proper term function having
two or more fixed points, cf. [4]. Thus, by Proposition 5, A is not 2-aperiodic. If
0 ∈ R the same reasoning applies, since if A is not definite, then the algebra A

′

obtained from A by removing the constants (so that the rank type of A
′ is {1})

is also not definite. �
Thus, when R does not contain any integer > 1, then the hierarchy (1) collapses.
In the remaining part of this section we will show that when R contains an integer
> 1, then the hierarchy is proper.

Proposition 8. If R contains an integer n > 1 then SAper1 ⊂ CAper.

Proof. Let Σ contain the symbol σ of rank > 1. Define the Σ-tree automaton A

on the set of states A = {0, 1, 2} as follows:

σA(x1, . . . , xn) =

⎧⎨
⎩

0 if x1 = . . . = xn = 1;
1 if x1 = . . . = xn = 0;
2 otherwise.

Let the interpretation of any other symbol be a constant function. (We may add
all constant functions if Σ is large enough.) This automaton is not 1-aperiodic,
since the term function A → A induced by the term σ(x1, . . . , x1) maps 0 to 1
and 1 to 0.

However, A is context aperiodic: For any proper term function f : A → A
induced by a nontrivial context it holds that f2 is a constant function, so that
f2 = f3. �

Proposition 9. Suppose that R contains an integer > 1. Then for each n > 1
there exists an (n − 1)-aperiodic tree automaton which is not n-aperiodic.

Aperiodicity in Tree Automata 197

Proof. Given n, we will first prove the claim assuming that the rank type contains
an integer m ≥ n.

We are going to construct a tree automaton A on the set

{0, 1, . . . , n, 1′, . . . , n′}

having at least the operations σA

i : Am → A, i ∈ [n]. For each i ∈ [n], we define

σA

i (1, . . . , n, . . . , n) = i′

σA

i (1′, . . . , n′, . . . , n′) = i.

In all remaining cases, the operations σA
i return 0. For each integer k ∈ R, k 	= m,

we take a single operation symbol in Σk and interpret it as the constant function
Ak → A with value 0. This defines the tree automaton A.

For each i ∈ [n], let si = σi(x1, . . . , xn, . . . , xn) ∈ TΣ(Xn). If f = 〈sA
1 , . . . , sA

n〉,
then f(1, . . . , n) = (1′, . . . , n′) and f(1′, . . . , n′) = (1, . . . , n) showing that A is
not n-aperiodic.

To prove that A is (n − 1)-aperiodic, consider any proper tree t ∈ TΣ(Xn−1).
We show that tA : An−1 → A is constant with value 0. This is clearly true when
an operation symbol different from one of the σi appears in t. Suppose now
all operations symbols appearing in t are in the set {σ1, . . . , σn}. Then t has a
subtree of the form s = σi(xj1 , . . . , xjm). Since the first n variables xj1 , . . . , xjn

cannot be all distinct, sA is the constant function An−1 → A with value 0. It
follows now that tA is also this function.

We show how to modify the above construction when each integer in R is less
than n. Let m denote the maximal integer in R, so that m > 1. Let k denote the
least integer with 1+k(m−1) ≥ n, so that k ≥ 2. We take symbols σi,1, . . . , σi,k

of rank m, for all i ∈ [n]. Consider the trees in TΣ(Xn),

si,1 = σi,1(x1, . . . , xm)
si,2 = σi,2(si,1, xm+1, . . . , xm+m−1)

...
si,k−1 = σi,k−1(si,k−2, xm+(k−2)(m−1)+1, . . . , xm+(k−1)(m−1))

si,k = σi,k(si,k−1, xm+(k−1)m+1, . . . , xn, . . . , xn)

Let si = si,k, i ∈ [n]. Now define the interpretation of the σi,j so that

sA

i (1, . . . , n) = i′

sA

i (1′, . . . , n′) = i,

for all i, moreover, for each i and j < k,

sA

i,j(1, . . . , n) and sA

i,j(1
′, . . . , n′)

are new elements. The set A is the union of the set {0, 1, . . . , n, 1′, . . . , n′} with
these new elements. In all other cases, the operations σi,j return 0. As before,

198 Z. Ésik and S. Iván

for all p 	= m, we take a single operation symbol in Σp whose interpretation is a
constant function with value 0. We omit the formal verification of the correctness
of this construction. �

Proposition 10. If R contains an integer k > 1, then D ⊂ SAper.

Proof. Let Σ be a ranked alphabet of rank type R and σ ∈ Σk a function symbol
with k > 1. Define the Σ-tree automaton A as follows. Let A = {0, 1, 2} and

σA(a1, . . . , ak) =
{

1 if 0 ∈ {a1, . . . , ak} ⊆ {0, 1};
2 otherwise,

for all a1, . . . , ak ∈ A. All other symbols in Σ are interpreted as a constant
function with value 2.

It is clear that for any nontrivial tree t ∈ TΣ(Xn), tA(a1, . . . , an) ∈ {1, 2}
holds; moreover, if a1, . . . , an ∈ {1, 2}, then tA(a1, . . . , an) = 2. It follows that
for any proper term function f : An → An, each component of f2 is a constant
function with value 2.

We show that A is not definite. Consider the following sequences si, ti of trees
in TΣ(X2): s0 = σ(x1, . . . , x1), sn+1 = σ(x1, . . . , x1, sn) and t0 = σ(x2, . . . , x2),
tn+1 = σ(x1, . . . , x1, tn). It is easy to check that sA

n(0, 1) = 1 and tA
n(0, 1) = 2

holds for any integer n ≥ 0, hence—since the trees sn and tn agree up to depth
n—A is indeed not definite. �

5 Decidability and Complexity

Since for any Σ-tree automaton A and for any n ≥ 1, Sn(A) is finite, it is clear
that there exists an algorithm to decide, given a Σ-tree automaton A and an
integer n, whether A is n-aperiodic. Also, context aperiodicity is decidable. How-
ever, strong aperiodicity of a tree automaton is not immediately decidable, since
the definition of strong aperiodicity involves a condition for each n. (However,
see Remark 1.) In this section, we show that strong aperiodicity is decidable
in polynomial time. It is known that deciding aperiodicity of classical automata
(the case when R = {1}) is PSPACE-complete, cf. [2,3]. We use this fact to show
that for any fixed n, deciding whether a tree automaton belongs to SApern is
PSPACE-hard.

Let A be a Σ-tree automaton and consider the direct product A×A of A with
itself. Let B ⊆ A × A a set of state pairs. We denote by [B] the following set
containing state pairs:

{tA×A
(
(a1, b1), . . . , (an, bn)

)
: n ≥ 0, t ∈ TΣ(Xn) nontrivial, (ai, bi) ∈ B}.

Note that for any A and B ⊆ A×A, the set [B] is computable in time polynomial
in |A|, the size of A defined as n+

∑
i∈R sin

i, where n = |A| and si = |Σi|, for all
i ∈ R. Before proving our PSPACE-hardness result for the complexity of strong
aperiodicity, we make the following observation:

Aperiodicity in Tree Automata 199

Lemma 4. The following are equivalent for any Σ-tree automaton A:

i) There exist an integer n and a proper term function f : An → An of A with
at least two different fixed points.

ii) There exist an integer n and a proper term function f : (A × A)n → (A ×
A)n of the direct product A × A such that f has a fixed point of the form(
(a1, b1), . . . , (an, bn)

)
with ai 	= bi for some i ∈ [n].

Proposition 11. The following are equivalent for any Σ-tree automaton A:

i) A is not strongly aperiodic;
ii) there exist an integer n > 0 and nontrivial trees t1, . . . , tn ∈ TΣ(Xn) such

that (t1, . . . , tn)A has at least two different fixed points;
iii) there exist a set S ⊆ A × A and states a 	= b ∈ A such that (a, b) ∈ S ⊆ [S];
iv) the mapping P (A×A) → P (A×A) defined by B
→ [B]∩B has a fixed point

S which contains a pair (a, b) with a 	= b;
v) the greatest fixed point of the mapping B
→ [B]∩B contains some pair (a, b)

with a 	= b.

Proof. i) → ii). We have already proved this (Corollary 1).
ii) → iii). Let n > 0 be an integer, t1, . . . , tn ∈ TΣ(Xn) nontrivial trees

and (a1, . . . , an) 	= (b1, . . . , bn) different state tuples such that both (a1, . . . , an)
and (b1, . . . , bn) are fixed points of (t1, . . . , tn)A. Then

(
(a1, b1), . . . , (an, bn)

)
is a

fixed point of (t1, . . . , tn)A×A. Hence, choosing S = {(ai, bi) : i ∈ [n]} we get that
S ⊆ [S], and since (a1, . . . , an) 	= (b1, . . . , bn), there exists a state pair (ai, bi) ∈ S
with ai 	= bi.

iii) → iv). This is a simple reformulation.
iv) → v). The mapping B
→ [B] ∩ B is monotone, so it has a greatest fixed

point.
v) → i). Suppose S = {(a1, b1), . . . , (an, bn)} is the greatest fixed point. Since

S is a fixed point, S = [S] ∩ S. Moreover, by assumption, ai 	= bi holds for
some i ∈ [n]. It follows (from the definition of [S]) that there exist nontrivial
trees t1, . . . , tn ∈ TΣ(Xn) such that

(
(a1, b1), . . . , (an, bn)

)
is a fixed point of

(t1, . . . , tn)A×A. Now we can apply Lemma 4 and Corollary 1 and get the result.
�

Theorem 3. It is decidable in polynomial time whether a given tree automaton
A is strongly aperiodic.

Proof. The condition v) of Proposition 11 is clearly decidable in polynomial time:
we have to compute Fn2

(A × A), where F : P (A × A) → P (A × A) is defined
by F (B) = [B]∩B and check whether the resulting set contains an ordered pair
whose components are different. Since F is computable by a polynomial time
procedure, its iteration for n2 steps runs in polynomial time. �
It is clear that for any fixed n, testing whether a tree automaton is in SApern can
be done in exponential time. The following proposition establishes a PSPACE
lower bound.

200 Z. Ésik and S. Iván

Proposition 12. For each fixed n, it is PSPACE-hard to decide, given a tree
automaton A, whether A is n-aperiodic.

Proof. Consider an ordinary automaton, i.e., a Σ-tree automaton A, where Σ is
of rank type {1}. We construct a Δ-tree automaton B, for some Δ, which is n-
aperiodic if and only if A is aperiodic. We define B = {0}∪{(a, j) : a ∈ A, j ∈ [n]}
so that B has |A| × n + 1 states. Then let Δ = Δn = {(σ, i) : σ ∈ Σ, i ∈
[n]}. The operations (σ, i)A are defined as follows. Suppose that σA(a) = b, for
some a, b ∈ A and σ ∈ Σ. Then we let (σ, i)A((a, 1), . . . , (a, n)) = (b, i). In all
remaining cases, the operation returns 0. For each Σ-term t ∈ TΣ(Xn), define
t = (t1, . . . , tn) ∈ TΔ(Xn)n as follows. If t = x1 then ti = xi, for each i. If
t = σ(s), then ti = (σ, i)(s), for each i. Now if tA(a) = b, then tB(a) = b, where
a = (a1, . . . , an) and b is defined in the same way. It follows that if A is not
aperiodic, then B is not n-aperiodic.

We still have to show that if B is not n-aperiodic then A is not strongly
aperiodic either. For this reason, we define the paths in a term t ∈ TΔ(Xn) as
follows. If t = xi then paths(t) = {x1}. If t = (σ, i)(t1, . . . , tn) then paths(t) =
{σ(s) : s ∈

⋃n
j=1 paths(tj)}. Note that paths(t) ⊆ TΣ(X1).

Now assume that B is not n-aperiodic, so that there exist some q1, . . . , qk ∈
An, k > 1, a vector of nontrivial terms t = (t1, . . . , tn) ∈ TΔ(Xn)n such that
tB(qi) = qi+1, for all i = 1, . . . , k − 1 and tB(qk) = q1. Now each ti contains
a subtree of the form (σ, j)(xk1 , . . . , xkn). However, the variables xk1 , . . . , xkn

must be all distinct, since otherwise tA

i would be constant with value 0. But then
the components of each qi must also be all distinct, moreover, the components
of each qj must give a permutation of the states (a, 1), . . . , (a, n) for some a ∈
A, since otherwise we would have tB

i (qj) = 0. Also, if (σ, j)(s1, . . . , sn) is any
subtree of some component of t, then for any qi there must exist a state a ∈ A

such that sA
1 (qi), . . . , sA

n(qi) is the sequence (a, 1), . . . , (a, n). It then follows that
there is a permutation π such that for each qi there is some state ai ∈ A with
qi = ((a, π(1)), . . . , (a, π(n)). Of course, the sates ai are all distinct. Thus, if
we take any tree s ∈ paths(tj), for any j, then we have sA(ai) = ai+1 for all
i = 1, . . . , k − 1 and sA(ak) = a1. This shows that A is not aperiodic. �

6 Aperiodicity and Logic

In this section we relate the above aperiodicity notions to formal logic. We
establish the following facts for tree languages over ranked alphabets of rank
type R = {0, 2}.

1. If a tree language is in CTL, then its minimal tree automaton is in SAper1.
2. There exists a tree language in CTL whose minimal automaton is not in

SAper2.
3. There exists a tree language definable in first order logic equipped with the

relation < which is not 1-aperiodic.
4. There exists a 1-aperiodic tree language which is not definable in first order

logic equipped with both < and the successor relations.

Aperiodicity in Tree Automata 201

The above results can all be extended to rank types containing 0 and at least one
integer > 1. We recall that if A is a Σ-tree automaton, then the tree language ac-
cepted by A with final states F ⊆ A is the set {t : tA ∈ F}. Languages acceptable
by tree automata are called regular. It is known that each regular tree language
can be accepted by a minimal tree automaton, unique up to isomorphism.

We start with the definitions of the above logics. Suppose that Σ is a ranked
set of rank type R = {0, 2}. An atomic formula of the logic FO(<, S1, S2) over
Σ is of the form Pσ(z), where σ ∈ Σ and z is a first order variable ranging
over the vertices of a tree in TΣ . The meaning of this formula is that the ver-
tex denoted by z is labeled σ. Further atomic formulas are Si(z1, z2), i = 1, 2
and z1 < z2 expressing that the vertices z1 and z2 are related by the corre-
sponding relation, i.e., z2 is the ith successor of z1 and z2 is a descendant of
z1, respectively. The formulas of the logic FO(<, S1, S2) are constructed from
these atomic formulas by the Boolean connectives and existential and/or uni-
versal quantification. When ϕ is a closed formula of this logic, we let Lϕ denote
the set of all trees t ∈ TΣ satisfying ϕ, and call Lϕ a tree language definable in
FO(<, S1, S2). The collection of all these languages for all ranked alphabets is
denoted FO(<, S1, S2). We let FO(<) stand for the class of languages definable
in the sublogic obtained by dropping the successor relations.

The other logic, CTL, has atomic formulas pσ, σ ∈ Σ expressing that the
root of a tree is labeled σ. The set of formulas is the least set generated from
the atomic formulas by the Boolean connectives and the Xi, i = 1, 2 and EU
modalities. A tree t satisfies a formula Xiϕ if the ith successor of the root exists
and satisfies ϕ. Moreover, t satisfies ϕEUψ if it has a path starting from the root
which contains a vertex v such that the subtree rooted at this vertex satisfies
ψ and each subtree rooted at a vertex preceding v satisfies ϕ. We let CTL
denote the class of languages definable in CTL. In this logic, the EF modality is
expressible, where a tree satisfies EFϕ if it has a subtree satisfying ϕ.

It is known that CTL is a proper subclass of FO(<, S1, S2) and that each
language in FO(<, S1, S2) is regular. Moreover, as shown in effect in [16], the
minimal automaton [8] of each language in FO(<, S1, S2) is context aperiodic.

In the rest of this section we fix R = {0, 2}.
Proposition 13. If L is a tree language in CTL, then the minimal automaton
of L is in SAper1.

Proof. It was shown in [6,7] that a tree language is in CTL if and only if its
minimal tree automaton is in the least generalized cascade variety containing the
automaton over the two-element set {0, 1} equipped with the binary or function
and the two constants 0, 1. Our claim thus follows from the facts that this tree
automaton is 1-aperiodic and that 1-aperiodic tree automata form a generalized
cascade variety, cf. Theorem 1. �
Proposition 14. There exists a tree language in CTL whose minimal tree au-
tomaton is not in SAper2.

Proof. Consider the Σ-tree automaton A on {0, 1}, where Σ contains the binary
symbols σ1 and σ2 respectively interpreted as the binary or function and the

202 Z. Ésik and S. Iván

binary constant function with value 1, and the constant symbol σ0 interpreted as
0. Then A is the minimal tree automaton of the language L ⊆ TΣ consisting of
all trees containing a vertex labeled σ2. This language is defined by the formula
EFpσ2 . On the other hand, the identity function is a proper term function having
two fixed points. Thus A 	∈ SAper2. �

Proposition 15. There exists a regular tree language in FO(<) whose minimal
tree automaton is not 1-aperiodic.

Proof. Let us define the ranked alphabet Σ with Σ2 = {σ, ν1, ν2} and Σ0 =
{c}. We construct a regular tree language L ⊆ TΣ in FO(<) whose minimal
automaton is not 1-aperiodic. Let L be the following language:

L = {t ∈ TΣ : Paths(t) ∩ (σν1σν2)∗c 	= ∅}.

Here, Paths(t) is the set of all words which are label sequences of maximal paths
in t.

Now L is definable in FO(<): a tree t ∈ TΣ belongs to L if and only if there
exists a vertex v such that the following hold:

1. the label of v is c (hence v is a leaf);
2. if y is a successor of x and y < v then x is labeled σ if and only if y is labeled

in {ν1, ν2}, and x is labeled in {ν1, ν2} if and only if y is labeled σ;
3. if y is a second successor of x and y < v then x is labeled ν1 if and only if y

is labeled ν2, and x is labeled ν2 if and only if y is labeled ν1;
4. the root is labeled in {σ, c} and if v is a successor of x then x is labeled ν2.

It is clear that all these conditions are expressible in FO(<). Now consider
the following infinite sequence of trees ti: t0 = c, and for all i ≥ 0, ti+1 =
σ(ν1(ti, ti), ν2(ti, ti)). It is clear that ti ∈ L if and only if i is even: hence the
minimal automaton of L is not 1-aperiodic (since the sequence ti corresponds to
a sequence f i(a0) in the minimal recognizer A of L with a0 = cA, where f is the
proper term function induced by the tree σ(ν1(x1, x1), ν2(x1, x1))). �

Proposition 16. There exists a tree language whose minimal automaton is 1-
aperiodic which is not in FO(<, S1, S2).

Proof. Let Σ0 = {0,1}, Σ2 = {∧, ∨}, and let us define the following tree
automaton A on A = {0, 1, ⊥} that was introduced in [13]: 0A = 0, 1A = 1 and

∧A(x, y) =

⎧⎨
⎩

1 if x = y = 1;
0 if {x, y} = {0, 1};
⊥ otherwise,

∨A (x, y) =

⎧⎨
⎩

0 if x = y = 0;
1 if {x, y} = {0, 1};
⊥ otherwise.

Let L = {t ∈ TΣ : tA = 1}. It has been shown in [13] that L is not contained in
FO(<, S1, S2). It is easy to check that A is 1-aperiodic. We note that A is not
2-aperiodic, since both 1 and ⊥ are fixed points of the term function A → A
induced by ∧(x1, x1). �

Aperiodicity in Tree Automata 203

7 A Generalization

In this section, we provide a generalization of the aperiodicity notions studied
above. The following definition is motivated by the Krohn-Rhodes decomposition
theorem [4].

Definition 4. Suppose that G is a class of finite simple groups closed under
division. We say that a tree automaton A belongs to the class Aut(G, n) for
some positive integer n exactly when each simple group dividing Sn(A) is in G.
The intersection of all classes Aut(G, n) is Aut(G). Moreover, we let Autc(G)
denote the class of all tree automata A such that every simple group divisor of
C(A) is in G.

When G contains only the trivial groups, then the above classes are just
SApern, SAper and CAper, respectively. The following generalization of The-
orems 1 and 2 holds.

Theorem 4. For each n, Aut(G, n) is a generalized cascade variety. Aut(G)
and Autc(G) are generalized cascade varieties.

We omit the proof which is based on the following facts. For the definition of
the wreath product of transformation semigroups we refer to [4].

Lemma 5. Suppose that A and B are Σ-tree automata such that A is a sub-
automaton or a homomorphic image of B. Then for each n, (A, Sn(A)) divides
(B, Sn(B)). Similarly, (A, C(A)) divides (B, C(B)).

Lemma 6. Suppose that A is a Σ-tree automaton, B is a Δ-tree automaton
and consider a generalized cascade product A ×α B. Then for each n, (A ×
B, Sn(A ×α B)) divides a wreath product of (A, S(A)) and (B, S(B)). Moreover,
(A × B, C(A ×α B)) divides a wreath product of (A, C(A)) and (B, C(B)).

8 A Variant of Aperiodicity

In this section we study a variant of the aperiodicity notions resulting by con-
sidering polynomial functions instead of term functions. We will show that in
this case the hierarchy collapses at n = 2.

Let A be a Σ-tree automaton of rank type R over the set A. By adding to
Σ each element of A as a new constant symbol we obtain the ranked alphabet
Σ(A) of rank type R∪{0}. (We may assume that Σ and A are disjoint.) We turn
A into a Σ(A)-tree automaton by interpreting each element of A by itself. We let
A

(p) denote the resulting Σ(A)-tree automaton. Below by a proper translation of
A we shall mean a function induced by a nontrivial context in TΣ(A)(X1). The
following was proved in [5], Corollary 3.12.

Lemma 7. The following are equivalent for any Σ-tree automaton A:

i) A is definite;
ii) Any proper translation of A has at most one fixed point.

204 Z. Ésik and S. Iván

We also note the obvious fact that A is definite if and only if A
(p) is.

For each n, we let SAper(p)
n denote the class of all tree automata A such that

A
(p) is in SApern. We define the classesSAper(p) andCAper(p) in the same way.

Theorem 5. The following are equivalent for any Σ-tree automaton A:

i) A is definite;
ii) A ∈ SAper(p);
iii) A ∈ SAper(p)

2 ;
iv) Each proper translation of A has at most one fixed point.

Proof. The first and last conditions are equivalent by Lemma 7, and the first
condition implies the second by Corollary 2. It is clear that the second condition
implies the third. Finally, the third implies the fourth by Proposition 5. �

Corollary 3. It is decidable in polynomial time whether a tree automaton is in
SAper(p).

Proof. A polynomial time algorithm is implicit in [5]. �

Proposition 17. SAper(p)
2 ⊂ SAper(p)

1 ⊂ CAper(p).

Proof. The inclusions are clear. The second inclusion is strict by the proof of
Proposition 8. The first is strict since the tree automaton on {0, 1} with the or

function as the single operation is in SAper(p)
1 \ D. �

Proposition 18. Suppose the rank type R contains an integer > 1. Then for
each n there exist tree automata A and B such that both A and B are (n − 1)-
aperiodic, neither of them is n-aperiodic, moreover, A is contained in SAper(p)

1
and B is not.

Proof. First we deal with the case when R contains an integer k ≥ n.
Consider the automaton A constructed in the proof of Proposition 9. We have

proved that A is (n − 1)-aperiodic and not n-aperiodic. It is easy to see that for
every non-constant proper term function f : A → A of A

(p) there exists at most
one state a with f(a) 	= 0, moreover, this state a is different from 0. From this
we can conclude that f2 = f3 holds for any such function. Thus, A is contained
in SAper(p)

1 .
Now we construct the automaton B by modifying the construction of A as

follows. The state set of B is B = {0, . . . , n} ∪ {1′}. For each i ∈ [n], we define
σB

i as follows:

σB

i (1, . . . , n, . . . , n) = σB

i (1′, 2, . . . , n, . . . , n) = i if i > 1;

σB

1 (1, . . . , n, . . . , n) = 1′ and σB

1 (1′, 2, . . . , n, . . . , n) = 1.

In all remaining cases the functions σB
i return 0, and all other function symbols

are interpreted as a constant function with value 0.

Aperiodicity in Tree Automata 205

Now by the same argument as in the proof of Proposition 9 we get that B

is (n − 1)-aperiodic but not n-aperiodic. Also, since for t = σ1(x1, 2, . . . , n) in
TΣ(A)(X1) we have tB(1) = 1′ and tB(1′) = 1, B is not contained in SAper(p)

1 .
If R contains only integers less than n, then we can modify B as in the proof

of Proposition 9. �

Proposition 19. Suppose that R contains some integer k > 1. Then there exists
an automaton A contained in SAper\SAper(p)

1 .

Proof. We define the following Σ-tree automaton A, where Σi = {σi} for each
i ∈ R and A = {0, 1, 2}. For each i ∈ R with i 	= k, let σA

i be the constant
function with value 2 and let us define σA

k as follows:

σA

k (a1, . . . , ak) =
{

1 if {a1, . . . , ak} = {0, 2};
2 otherwise.

Now it is easy to see that tA(a1, . . . , an) ∈ {1, 2} for all proper trees t ∈
TΣ(Xn), n ≥ 1, and for all a1, . . . , an ∈ A. Moreover, if each ai is 1 or 2, then
tA(a1, . . . , an) = 2. It follows that for any tuple of proper trees t = (t1, . . . , tn) ∈(
TΣ(Xn)

)n, each component of (tA)2 : An → An is constant with value 2, hence
A is strongly aperiodic.

However, since the function induced by σk(0, . . . , 0, x1) maps 1 to 2 and 2 to
1, A is not contained in SAper(p)

1 . �

Corollary 4. As shown in the the Figure, when R contains an integer > 1, the
class SAper(p)

1 nontrivially intersects SAper and each member of the hierarchy
SApern for n ≥ 2.

9 Conclusions

Given a tree automaton A (i.e., a finite algebra), two natural categories associ-
ated with A are the category T +(A) of proper term functions1 and the category
Pol+(A) of proper polynomial functions of A. In both categories, the objects may
be taken as the positive integers. Now A is n-aperiodic if and only if the hom-set
T +(A)(n, n) is group-free (which yields that each T +(A)(m, m) with m < n
is also group-free). And A is strongly aperiodic if each hom-set T +(A)(n, n) is
group-free. Thus these notions are very natural from the mathematical point
of view. Similarly, A is n-aperiodic with respect to polynomials if and only if
the hom-set Pol+(A)(n, n) is group-free, and strongly aperiodic with respect to
polynomials if and only if each Pol+(A)(n, n) is group-free.

We have fully described the relationship between the above notions and estab-
lished decidability and complexity results for them. Aperiodicity captures some
nice combinatorial properties of regular tree languages. For example, a regular
1 In categorical algebra, one usually takes the category T (A) of all term functions of

A, called the Lawvere theory of term functions.

206 Z. Ésik and S. Iván

tree language L ⊆ TΣ is n-aperiodic (i.e., its minimal automaton is n-aperiodic)
if and only if there is some k such that for all r ∈ TΣ(Xn), t ∈ TΣ(Xn)n and
s ∈ T n

Σ ,

r · tk · s ∈ L ⇔ r · tk+1 · s ∈ L. (2)

The languages satisfying this condition form a tree language variety as defined in
[6], a notion closely related to Almeida’s and Steinby’s tree language varieties, cf.
[1,14,15]. The operation of product in (2) is of course defined by tree substitution.

Aperiodicity is also related to logical definability, though probably not very
closely. The decidability of the membership of a regular tree language in
FO(<, S1, S2) or CTL is open. According to Proposition 13, CTL is contained
in the class of 1-aperiodic tree languages. The containment is strict by Proposi-
tion 16, so that in order to obtain a decidable characterization one needs to look
for additional conditions.

Open problem. Give a decidable characterization of CTL.

References

1. Almeida, J.: On pseudovarieties, varieties of languages, filters of congruences, pseu-
doidentities and related topics. Algebra Universalis 27, 333–350 (1990)

2. Bernátsky, L.: Regular expression star-freeness is PSPACE-complete. Acta Cyber-
netica 13, 1–21 (1997)

3. Cho, S., Huynh, D.T.: Finite-automaton aperiodicity is PSPACE-complete. Theo-
retical Computer Science 88, 99–116 (1991)

4. Eilenberg, S.: Automata, Languages, and Machines, vol. A&B. Academic Press,
London (1974/1976)

5. Ésik, Z.: Definite tree automata and their cascade compositions. Publ. Math. 48,
243–262 (1996)

6. Ésik, Z.: An algebraic characterization of temporal logics on finite trees. Parts I,
II, III. In: 1st International Conference on Algebraic Informatics, 2005, pp. 53–77,
79–99, 101–110, Aristotle Univ. Thessaloniki, Thessaloniki (2005)

7. Ésik, Z.: Characterizing CTL-like logics on finite trees. Theoretical Computer Sci-
ence 356, 136–152 (2006)

8. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
9. Grätzer, G.: Universal Algebra, 2nd edn. Springer, Heidelberg (1979)

10. Heuter, U.: Definite tree languages. Bulletin of the EATCS 35, 137–142 (1988)
11. Heuter, U.: First-order properties of trees, star-free expressions, and aperiodicity.

RAIRO Inform. Théor. Appl. 25, 125–145 (1991)
12. McNaughton, R., Papert, S.: Counter-free Automata. MIT Press, Cambridge, MA

(1971)
13. Potthoff, A.: Modulo-counting quantifiers over finite trees. Theoretical Computer

Science 126, 97–112 (1994)
14. Steinby, M.: A theory of tree language varieties. In: Tree Automata and Languages,

North-Holland, Amsterdam, pp. 57–81 (1992)
15. Steinby, M.: General varieties of tree languages. Theoretical Computer Science 205,

1–43 (1998)
16. Thomas, W.: Logical aspects in the study of tree languages. In: Ninth colloquium

on trees in algebra and programming (Bordeaux, 1984), pp. 31–49. Cambridge
Univ. Press, Cambridge (1984)

Aperiodicity in Tree Automata 207

Appendix

(p)

CAper

.

.

.

SAper1

SAper(p)

FO(<,S1,S2)

FO(<)

CTL

SAper

1

=SAper(p)

=SAper2

D

SAper
2

CAper

SAper1

Fig. 1. The hierarchies

The Syntactic Complexity of Eulerian Graphs�

Antonios Kalampakas

Technical Institute of Kavala,
Department of Exact Sciences,

65404, Kavala, Greece
akalamp@math.auth.gr

Abstract. In this paper we prove that the set of directed Eulerian
graphs is not recognizable. On the other hand, the set of directed graphs
with an Eulerian underlying graph is shown to be recognizable. Fur-
thermore, we compute the syntactic complexity of this language and we
compare it with that of connected graphs.

1 Introduction

The notion of graph language recognizability, by virtue of the syntactic mag-
moid, was investigated in [5]. In this setup, the syntactic complexity of a given
recognizable graph language can be determined, giving rise to a syntactic classi-
fication inside the class of recognizable graph languages. In this paper we inves-
tigate the set of Eulerian graphs and that of graphs with an Eulerian underlying
graph. The syntactic complexity of the latter is determined, and we see that it
is placed higher than that of connected graphs in the syntactic classification of
recognizable graph languages.

A hypergraph consists of a set of nodes and a set of hyperedges, just as
an ordinary (directed) graph except that a hyperedge may have an arbitrary
sequence of sources and an arbitrary sequence of targets. Each hyperedge is
labelled with a symbol from a doubly ranked alphabet Σ in such a way that
the first (second) rank of its label equals the number of its sources (targets
respectively). Also, every hypergraph is multi-pointed in the sense that it has a
sequence of m “begin” and n “end” nodes, m, n ≥ 0.

From now on a hypergraph will also be called a graph, and its hyperedges
edges; furthermore, to specify the number of begin and end nodes, it will be
called an (m, n)-graph. We denote by GRm,n(Σ) the set of all (m, n)-graphs
labelled over Σ.

If G is an (m, n)-graph and H is an (n, k)-graph then their product G ◦ H
is the (m, k)-graph obtained by taking the disjoint union of G and H and then
identifying the ith end node of G with the ith begin node of H , for every i ∈
{1, ..., n}; also, the sequence of begin nodes of G ◦ H is the one of G, and its
sequence of end nodes the one of H .

The sum G�H of arbitrary graphs G and H is their disjoint union with their
sequences of begin nodes concatenated and similarly for their end nodes.
� This research was partially supported by I.K.Y.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 208–217, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Syntactic Complexity of Eulerian Graphs 209

The family GR(Σ) = (GRm,n(Σ))m,n∈N with the operations ◦ and � forms a
magmoid in the sense of [1,2], that is, a strict monoidal category (or x-category)
whose objects are the natural numbers (see e.g. [8,7]). In [4], GR(Σ) is charac-
terized as the quotient of the free magmoid generated by Σ together with a set
of five elements, and divided by a finite set of equations.

Magmoids simulate the ordinary monoid structure and a natural regularity
notion derives from this simulation (cf. [5]). Precisely, we say that L ⊆ M is
recognizable whenever there exist a locally finite magmoid N (i.e., Nm,n is finite
for all m, n ≥ 0) and a morphism of magmoids h : M → N , so that L = h−1(P)
for some P ⊆ N . Note that, L ⊆ M means that L is a doubly ranked set
L = (Lm,n), and for all m, n ≥ 0, Lm,n ⊆ Mm,n.

An advantage of investigating graph languages within magmoids is that in
this setup it is possible to classify them according to their syntactic complexity.
We say that two elements of a magmoid M are equivalent modulo the syntactic
congruence ∼L of a subset L ⊆ M , whenever they have the same set of contexts
with respect to L. The syntactic magmoid of L, denoted ML, is then the quotient
of M by ∼L, which is actually the smallest quotient of M recognizing L. In [5] it
is shown that a subset L ⊆ M is recognizable if and only if its syntactic magmoid
is locally finite.

The syntactic complexity of a recognizable set L ⊆ M is measured by a
function, called the syntax complexity function of L, mapping any pair (m, n)
of natural numbers to the number of syntactic classes of ML at the rank (m, n).
It is proved in [5] that the syntactic complexity of the set Con(Σ) of connected
graphs is:

SCCon(Σ)(m, n) = Bm+n + 1,

where Bk denotes the k-th bellian number i.e., the number of all partitions of
the set {1, 2, ..., k}, cf. [3]. In this paper we see that the set of directed Eulerian
graphs (multiple edges allowed) is not recognizable. Furthermore, we prove that
the set EU(Σ) of directed graphs with an Eulerian underlying graph (which
contains the set of connected graphs) is recognizable. The syntax complex-
ity function of EU(Σ) is calculated and it turns out that, for m + n > 2, it
holds

SCCon(Σ)(m, n) < SCEU(Σ)(m, n).

The paper is divided into 4 sections. The notion of a magmoid, together with
some preliminary matter, are presented in Section 2. We particularly insist in
the construction of the magmoid of hypergraphs by recalling the definition of
hypergraphs introduced in [6] together with the operations product and sum.
The notions of magmoid recognizability and syntactic complexity of a graph
language are presented in Section 3. In the last section we study the set of
directed Eulerian graphs and that of directed graphs with an Eulerian underlying
graph.

210 A. Kalampakas

2 Magmoids and Graphs

Recall that a doubly ranked set (or a doubly ranked alphabet) (Am,n)m,n∈N is a
set A together with a function rank : A → N × N, where N is the set of natural
numbers. For m, n ∈ N, Am,n is the set {a ∈ A | rank(a) = (m, n)}. In what
follows we will drop the subscript m, n ∈ N and denote a doubly ranked set
simply by (Am,n).

Definition 1. A magmoid is a doubly ranked set M = (Mm,n) equipped with
two operations

◦ : Mm,n × Mn,k → Mm,k, m, n, k � 0

� : Mm,n × Mm′,n′ → Mm+m′,n+n′ , m, n, m′, n′ � 0

which are associative in the obvious way and satisfy the distributivity law

(f ◦ g) � (f ′ ◦ g′) = (f � f ′) ◦ (g � g′)

whenever all the above operations are defined. Moreover, both the operations
◦ and � are unitary, i.e., M is equipped with a sequence of constants en ∈
Mn,n (n � 0), called units, such that

em ◦ f = f = f ◦ en, e0 � f = f = f � e0

for all f ∈ Mm,n and all m, n � 0, and the additional condition

em � en = em+n, for all m, n � 0

holds.

Submagmoids, morphisms, congruences and quotients of magmoids are defined
in the obvious way.

Next we construct the magmoid of hypergraphs. Given a finite alphabet X ,
we denote by X∗ the set of all words over X and for every word w ∈ X∗,
|w| denotes its length. Formally a concrete (m, n)-graph over a doubly ranked
alphabet Σ = (Σm,n) is a tuple

G = (V, E, s, t, l, begin, end)

where V is the finite set of nodes, E is the finite set of hyperedges, s : E → V ∗ is
the source function, t : E → V ∗ is the target function, l : E → Σ is the labelling
function such that rank(l(e)) = (|s(e)|, |t(e)|) for every e ∈ E, begin ∈ V ∗ with
|begin| = m is the sequence of begin nodes and end ∈ V ∗ with |end| = n is the
sequence of end nodes. For an edge e of a hypergraph G we simply write rank(e)
to denote rank(l(e)).

The specific sets V and E chosen to define a concrete graph G are actually
irrelevant. We shall not distinguish between two isomorphic graphs. Hence
the following definition of an abstract graph. Two concrete (m, n)-graphs
G = (V, E, s, t, l, begin, end) and G′ = (V ′, E′, s′, t′, l′, begin′, end′) over Σ are

The Syntactic Complexity of Eulerian Graphs 211

isomorphic iff there exist two bijections hV : V → V ′ and hE : E → E′ commut-
ing with source, target, labelling, begin and end in the usual way.

An abstract (m, n)-graph is defined to be the equivalence class of a concrete
(m, n)-graph with respect to isomorphism. We denote by GRm,n(Σ) the set of
all abstract (m, n)-graphs over Σ. Since we shall mainly be interested in abstract
graphs we shall simply call them graphs except when it is necessary to emphasize
that they are defined up to an isomorphism.

Any graph G ∈ GRm,n(Σ) having no edges, is called a discrete (m, n)-graph.
Given an edge label σ ∈ Σm,n, we denote by G(σ) the (m, n)-graph such that
V = {x1, . . . , xm, y1, . . . , yn}, E = {e} with l(e) = σ, begin = s(e) = x1 · · ·xm

and end = t(e) = y1 · · · yn.
If G is an (m, n)-graph represented by (V, E, s, t, l, begin, end) and H is an

(n, k)-graph represented by (V ′, E′, s′, t′, l′, begin′, end′) then their product G◦H
is the (m, k)-graph represented by the concrete graph obtained by taking the
disjoint union of G and H and then identifying the ith end node of G with the
ith begin node of H , for every i ∈ {1, . . . , n}; also, begin(G◦H) = begin(G) and
end(G ◦ H) = end(H).

The sum G�H of arbitrary graphs G and H is their disjoint union with their
sequences of begin nodes concatenated and similarly for their end nodes.

For instance let Σ = {a, b, c, d}, with rank(a) = (2, 1), rank(b) = (1, 1),
rank(c) = (2, 2) and rank(d) = (1, 2). In the following pictures, edges are repre-
sented by boxes, nodes by dots, and the sources and targets of an edge by directed
lines that enter and leave the corresponding box, respectively. The order of the
sources and targets of an edge is the vertical order of the directed lines as drawn
in the pictures. We display two graphs G ∈ GR3,2(Σ) and H ∈ GR2,2(Σ), where
the ith begin node is indicated by bi, and the ith end node by ei.

b

a

c

e1

e2b3

b2

b1

G

b1

b2

a d

e1

e2

H

Then their product G ◦ H is the (3, 2)-graph

a d

e1

e2b

a

c

b3

b2

b1

and, their sum G � H is the (5, 4)-graph
For every n ∈ N the unit En of rank (n, n) is the discrete graph with nodes
x1, . . . , xn and begin(En) = end(En) = x1 · · · xn. Note that E0 is the empty
graph.

It is straightforward to verify that GR(Σ) = (GRm,n(Σ)) with the operations
defined above is a magmoid, see Lemma 6 of [6].

212 A. Kalampakas

b

a

c

e1

e2b3

b2

b1

b4

b5

a d

e3

e4

3 Recognizability and Syntactic Complexity

An elegant characterization of a congruence can be achieved by means of the
notion of the context. In a magmoid M an (m,n)-context is a 4-tuple ω =
(g1, f1, f2, g2), with fi ∈ Mmi,ni (i = 1, 2), g1 ∈ Ma,m1+m+m2 , g2 ∈ Mn1+n+n2,b,
where a, b ∈ N .

m2

m

m1

g1a g2 b

f1

f2

n??

n1

n2

The set of all (m, n)-contexts is denoted Contm,n(M). For any f ∈ Mm,n and
ω = (g1, f1, f2, g2) as above, we write ω[f] = g1 ◦ (f1 � f � f2) ◦ g2; note that
ω[f] ∈ Ma,b. Let L be a subset of the magmoid M and f ∈ Mm,n, we set

CL(f) = {ω | ω ∈ Contm,n(M), ω[f] ∈ L}.

Proposition 1 (cf. [5]). The equivalence ∼L on M defined by

f ∼L,m,n g, whenever CL(f) = CL(g)

is a congruence.

Given a magmoid M and a set L ⊆ M , ∼L is called the syntactic congruence
of L and the quotient magmoid ML = M/ ∼L is the syntactic magmoid of L.
Thus, for all m, n � 0, the set (ML)m,n can be identified with the set consisting
of all distinct contexts of the elements of Mm,n, i.e., we may write

(ML)m,n = {CL(f) | f ∈ Mm,n}

whereas, the operations of ML are given by the next formulas:

CL(f) ◦ CL(g) = CL(f ◦ g), CL(f) � CL(g) = CL(f � g).

Let M = (Mm,n) be a magmoid. A subset L of M is called recognizable if there
exists a locally finite magmoid N = (Nm,n) (i.e., Nm,n finite for all m, n ∈ N)
and a morphism H : M → N , so that L = H−1(P), for some P ⊆ N .

The Syntactic Complexity of Eulerian Graphs 213

Theorem 1 (cf. [5]). Let M be a magmoid and L its subset. The following
conditions are equivalent:

1. L is recognizable;
2. L is saturated by a congruence of a locally finite index;
3. ∼L has locally finite index;
4. the set card{CL(f) | f ∈ Mm,n} is finite for all m, n ∈ N;
5. the syntactic magmoid ML is locally finite.

The syntactic complexity of a recognizable subset L of a magmoid M can be
measured by the function SCL : N × N → N, called the syntax complexity
function of L, mapping any pair (m, n) of natural numbers to the number of
syntactic classes of ML at the rank (m, n), that is

SCL(m, n) = card(ML)m,n, m, n ∈ N.

Theorem 2 (cf. [5]). The syntactic complexity of the graph language Con(Σ)
of all connected graphs is

SCCon(Σ)(m, n) = Bm+n + 1, for all m, n ∈ N.

Recall that Bk is the k-th bellian number i.e., the number of all partitions of the
set {1, 2, ..., k}, cf. [3].

4 The Syntactic Complexity of Eulerian Graphs

In this section we see that the set of directed Eulerian graphs (with multiple
edges allowed) is not recognizable, while the set of directed graphs with Eulerian
underlying graph is proved to be recognizable. Furthermore, we calculate the
syntax complexity function of this graph language and we compare it with that
of connected graphs. In what follows, we deal only with ordinary graphs i.e., all
edges will be of rank (1, 1).

We start with the necessary definitions. A directed trail inside a graph is an
alternating sequence of nodes and edges v0, e1, . . . , envn where the edges align
source to target, so that each node (except v0) is the target of the preceding edge
and (except vn) the source of the subsequent one and also no edge is repeated.
A directed Euler tour is a directed trail that contains all the edges of the graph
and its origin and terminus are the same. A directed graph is Eulerian if it has
a directed Euler tour.

A well known characterization for directed Eulerian graphs states that a con-
nected directed graph is Eulerian if and only if the in-degree (i.e., the number of
incoming edges) of every node equals its out-degree (i.e., the number of outgoing
edges). With the help of this result we prove the following.

Proposition 2. The set E(Σ) of Eulerian graphs over a doubly ranked alphabet
Σ = Σ1,1 is not recognizable.

214 A. Kalampakas

Proof. First a notation, for a node v of a graph F we denote by [v] the difference
between the number of the incoming and the outgoing edges of v. Thus, a graph
F is Eulerian if and only if it is connected and it holds [v] = 0 for every node v
of F . Given a connected graph F ∈ GR1,1(Σ) let v1 be the begin node and v2
the end node of F . Then there exists a (1, 1)-context ω such that ω[F] ∈ E(Σ),
if and only if

[v] = 0, for all v �= v1, v2 and [v1] = −[v2].

Indeed, in order to turn F into an Eulerian graph we only have to add [v1] edges
from v1 to v2 (or [v2] edges from v2 to v1). In any other case, F cannot be
transformed into an Eulerian graph since we cannot add any edges to the nodes
v (v �= v1, v2).

Now let F, F ′ ∈ GR1,1(Σ) be two different connected graphs with the above
property and also [v1] �= [v′1]. Hence, for the two graphs it holds CE(Σ)(F) �=
CE(Σ)(F ′). This way we can construct infinitely many different syntactic classes
of E(Σ) at the rank (1, 1), and by virtue of Theorem 1 we get that this language
is not recognizable. 	

Notice that in the above proposition the graphs of E(Σ) are allowed to have
multiple edges and that is a critical point of the proof.

We proceed by studying the set of directed graphs with Eulerian underlying
graph. The underlying graph of a directed graph is the graph obtained by re-
placing every directed edge by an undirected one. Thus, an undirected trail is an
alternating sequence of nodes and edges v0, e1, . . . , envn where the edges align
source to target or target to source and also no edge is repeated. An undirected
Euler tour is an undirected trail that contains all the edges of the graph and its
origin and terminus are the same. A directed graph has an Eulerian underlying
graph if it has an undirected Euler tour.

It is known that a connected graph is Eulerian if and only if every node has
an even degree. Thus, a connected directed graph has an Eulerian underlying
graph if and only if every node has an even degree (the degree in this case is the
sum of the numbers of the incoming and the outgoing edges of the node). By
virtue of this characterization we shall prove the next theorem.

Theorem 3. The set EU(Σ) of directed graphs with an Eulerian underlying
graph over an alphabet Σ = Σ1,1 is recognizable. The syntax complexity function
of this set is

SCEU(Σ)(m,n) = 1 +
∑ (

m + n
k

)
S(k)

where the sum runs over all evens 0 ≤ k ≤ m + n and S(k) =

∑ k!
(k1!)s1 · s1! · (k2!)s2 · s2! · · · (kt!)st · st!

(
m + n − k

r

)
(s1+· · ·+st)rBm+n−k−r

where the sum runs over all decompositions s1 · k1 + · · · + st · kt = k, with
0 ≤ k1, . . . , kt ≤ k even numbers, and over all 0 ≤ r ≤ m + n − k.

The Syntactic Complexity of Eulerian Graphs 215

Proof. For m, n ∈ N we should calculate the distinct syntactic classes CEU(Σ)(F),
with F ∈ GRm,n(Σ). Let v1, v2, . . . , vm and u1, u2, . . . , un be respectively the m
begin and n end nodes of F . Each one of these nodes has either an even or
odd degree. Notice that if the degree of any one of the rest nodes is different
from zero then CEU(Σ) = ∅, since the degree of these nodes cannot be changed.
Hence, we may assume that the degree of all v �= v1, v2, . . . , vm, u1, u2, . . . , un

is even. Moreover, the graph F consists of one or more connected components,
thus we divide the begin and end nodes of F into distinct classes according to
which connected component they belong. We also observe that each connected
component can have an even number of nodes with an odd degree since the sum
of all the degrees of its nodes should be an even number (it is twice the number
of its edges). For the same reason, the total number of odd degrees in the begin
and end nodes of the graph F should also be an even number.

Now we see that for different distributions of even and odd degrees to the
nodes v1, . . . , vm, u1, u2, . . . , un of F and different divisions of them into classes,
with an even number of nodes with an odd degree in each class, we get different
syntactic classes. Hence, in order to calculate the number of different syntactic
classes of an (m, n)-graph we should count the different ways we can assign even
labels and (an even number of) odd labels into m + n objects and then multiply
this with the number of different divisions of these m + n objects into classes
that have an even number of objects with odd labels.

The first task consists in calculating the sum of the number of ways we can
choose k objects, with k = 0, 2, . . . , m + n if k is an even number, or k =
0, 2, . . . , m + n − 1 if k is odd, from a set of m + n objects. Hence, there are

(
m + n

0

)
+

(
m + n

2

)
+ · · · +

(
m + n
m + n

)

or (
m + n

0

)
+

(
m + n

2

)
+ · · · +

(
m + n

m + n − 1

)

ways we can do that.
Next, for the second task, suppose that we have assigned k odd labels (k even)

and of course the rest of the m + n objects are labelled even. First we count the
number of ways we can divide the set of k distinct objects into classes with an
even number of elements. This can be done in

∑ k!
(k1!)s1 · s1! · (k2!)s2 · s2! · · · (kt!)st · st!

different ways, where the sum runs over all decompositions s1 ·k1+· · ·+st·kt = k,
with 0 ≤ k1, . . . , kt ≤ k even numbers. For example, for k = 6, we have

6!
(2!)3 · 3!

+
6!

4! · 2!
+

6!
6!

= 31.

Now, we need to distribute the rest m+n−k objects, with the even labels, either
in these s1 + · · ·+ st sets or into an arbitrary number of new ones. Suppose that

216 A. Kalampakas

r (0 ≤ r ≤ m + n − k) of these m + n − k objects are going into the old sets and
hence m + n − k − r are partitioned into new sets. Then for each one of the

k!
(k1!)s1 · s1! · (k2!)s2 · s2! · · · (kt!)st · st!

divisions of k into s1 + · · · + st sets there are

(s1 + · · · + st)r

ways that we can distribute the r objects. Furthermore, there are Bm+n−k−r

ways that we can partition the set of m + n − k− r objects. Altogether now, the
second task can be done in S(k) =

∑ k!
(k1!)s1 · s1! · (k2!)s2 · s2! · · · (kt!)st · st!

(
m + n − k

r

)
(s1+· · ·+st)rBm+n−k−r

ways, where the sum runs over all decompositions s1 · k1 + · · · + st · kt = k, with
0 ≤ k1, . . . , kt ≤ k even numbers and over all 0 ≤ r ≤ m + n − k. Notice that
for k = 0, i.e., the case where all labels are even, it holds S(0) = Bm+n, which
represents the number of partitions of the m + n objects with the even labels.

Taking into account the above calculations, the different syntactic classes at
the rank (m, n) are

1 +
∑ (

m + n
k

)
S(k)

where the sum runs over all evens 0 ≤ k ≤ m + n, and we also added the empty
class (CEU(Σ) = ∅). 	

Remark 1. The intuitive expectation that the set of graphs with an Eulerian un-
derlying graph should be syntactically more complicated than that of connected
graphs is validated from the above result. Indeed, the formula of SCEU(Σ)(m, n)
for k = 0 is equal with Bm+n + 1, which is the syntax complexity of the set of
connected graphs at the rank (m, n). Hence, it holds,

SCCon(Σ)(m, n) ≤ SCEU(Σ)(m, n), for all m, n ∈ N,

where the equality holds only for m + n < 2.

References

1. Arnold, A., Dauchet, M.: Théorie des magmoides. I. RAIRO Inform. Théor. 12(3),
235–257 (1978)

2. Arnold, A., Dauchet, M.: Théorie des magmoides. II. RAIRO Inform. Théor. 13(2),
135–154 (1979)

3. Bell, E.T.: Exponential numbers. Amer. Math. Monthly 41, 411–419 (1934)
4. Bozapalidis, S., Kalampakas, A.: An Axiomatization of Graphs. Acta Informatica 41,

19–61 (2004)

The Syntactic Complexity of Eulerian Graphs 217

5. Bozapalidis, S., Kalampakas, A.: Recognizability of graph and pattern languages.
Acta Informatica 42, 553–581 (2006)

6. Engelfriet, J., Vereijken, J.J.: Context-free graph grammars and concatenation of
graphs. Acta Informatica 34, 773–803 (1997)

7. Hotz, G.: Eine Algebraisierung des Syntheseproblems von Schaltkreisen. EIK 1, 185-
205, 209-231 (1965)

8. MacLane, S.: Categories for the working mathematician. Springer, Heidelberg (1971)

Learning Deterministically

Recognizable Tree Series — Revisited

Andreas Maletti

Institute of Theoretical Computer Science, Faculty of Computer Science
Technische Universität Dresden
maletti@tcs.inf.tu-dresden.de

Abstract. We generalize a learning algorithm originally devised for de-
terministic all-accepting weighted tree automata (wta) to the setting of
arbitrary deterministic wta. The learning is exact, supervised, and uses
an adapted minimal adequate teacher; a learning model introduced by
Angluin. Our algorithm learns a minimal deterministic wta that recog-
nizes the taught tree series and runs in polynomial time in the size of
that wta and the size of the provided counterexamples. Compared to
the original algorithm, we show how to handle non-final states in the
learning process; this problem was posed as an open problem in [Drewes,
Vogler: Learning Deterministically Recognizable Tree Series, J. Autom.
Lang. Combin. 2007].

1 Introduction

We devise a supervised learning algorithm for deterministically recognizable tree
series. Learning algorithms for formal languages have a long and studied history
(see the seminal and survey papers [16,1,3,4]). The seminal paper [16] reports
first results on identification in the limit; in particular it shows that every recur-
sively enumerable language can be learned from a teacher. Here we study series;
quantitative versions of languages. In particular, a tree series associates to each
tree of TΣ (the set of all well-formed expressions over the ranked alphabet Σ) a
coefficient. Thus, it is nothing else than a mapping ψ : TΣ → A for some suitable
set A. It depends on A whether the coefficient represents, e.g., a probability, a
count, a string, etc. For the moment, we assume that (A, +, ·, 0, 1) is a field. A
tree language L ⊆ TΣ can then be identified with the tree series that maps the
elements of L to 1 and remaining elements of TΣ to 0.

Angluin [2] proposed query learning, a model of interactive learning. In this
learning model, the learner can question a teacher (or oracle). The teacher will
answer predetermined types of questions. For example, the minimally adequate
teacher [2,12] for a tree series ψ : TΣ → A answers only two types of questions
about ψ: coefficient and equivalence queries. A coefficient query asks for the
coefficient of a certain tree t in the tree series ψ. The teacher truthfully supplies
ψ(t). Second, the learner can query the teacher whether his learned tree series ϕ
coincides with ψ. The teacher either returns the special token ⊥ to signal equality

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 218–235, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Learning Deterministically Recognizable Tree Series — Revisited 219

(i.e., ϕ = ψ) or he supplies a counterexample. Such a counterexample is a tree t
on which ϕ and ψ disagree (i.e., ϕ(t) �= ψ(t)).

Certainly, we need to be able to finitely represent the learned tree series. To
this end, we use an automaton model called (bottom-up) weighted tree automaton
(for short: wta; see [8] and the references therein). These devices are classical
bottom-up tree automata [14,15] with transition weights. The weights are el-
ements of A and are combined using the operations + and · of the field (see
Definition 3). In [17], a learning algorithm based on the introduced minimally
adequate teacher is presented for wta over fields. Here we will restrict ourselves
to deterministic wta [8] and their recognized series, which are called determin-
istically recognizable. Since no general determinization procedure for wta over
fields is known, this task is not encompassed by the result of [17].

For deterministic wta over fields (actually, semifields), the learning algorithm
[12] was proposed. It is based on a restricted Myhill-Nerode theorem [12] for
the series recognized by deterministic all-accepting (i.e., all states are final) wta
(for short: aa-wta). Consequently, this algorithm learns the minimal determinis-
tic aa-wta that recognizes ψ (which is unique up to renaming of states) provided
that any deterministic aa-wta recognizing ψ exists. We extend this algorithm to
arbitrary deterministic wta and solve the open problem of [12].

Let us discuss the main differences. First, an aa-wta M makes no distinction
between final and non-final states because all of its states are final. In essence,
the internal working of M is completely exposed to the outside. It yields that the
recognized series ψ is subtree-closed [12]. This property demands that with every
tree t such that ψ(t) �= 0, also all of its subtrees are mapped (under ψ) to some
nonzero weight. With this property, the weight of the last transition that is used
to accept t = σ(t1, . . . , tk) can simply be computed as ψ(t) ·

∏k
i=1 ψ(ti)−1 (see

Definition 11). Consequently, the minimal deterministic aa-wta recognizing ψ is
unique (up to renaming of states).

On the contrary, there exists no unique minimal deterministic wta recogniz-
ing ψ because the weights on transitions that lead to non-final states can be
varied (occassionally called pushing [13]). In summary, we need to (i) distin-
guish final and non-final states and (ii) use a more complicated mechanism to
compute the transition weights (because some ψ(ti) might be 0 in the above
expression). The basis for our generalized learning will be the general Myhill-

Nerode theorem [5], which provides a characterization of the deterministically
recognizable tree series by means of finite-index congruences of the initial term
algebra (TΣ , Σ). We then follow the approach of [5] and introduce a helping
tree series (see Definition 10). The exact changes to the learning algorithm are
discussed in the main body. Our new algorithm runs in time O(sm2nr) where s
is the size of the largest counterexample supplied by the teacher, m and n are
the number of transitions and the number of states of the returned automaton,
respectively, and r is the maximal rank of the input symbols.

Including this Introduction, the paper comprises 6 sections. The second sec-
tion recalls basic notions and notations. In the next section, we recall wta and

220 A. Maletti

the Myhill-Nerode theorem [5]. In Sect. 4, we present the main contribution
of this paper, which is the generalized learning algorithm. Moreover, we prove
its correctness and continue in Sect. 5 with an elaborated example run of the
algorithm. In the last section, we discuss the runtime complexity of our new
algorithm and compare it to the learning algorithm of [12].

2 Preliminaries

We write IN to represent the nonnegative integers. Further, we write [l, u] for
{n ∈ IN | l � n � u}. Any nonempty and finite set Σ is an alphabet. A
ranked alphabet is a partition (Σk)k∈IN of an alphabet Σ. For every ranked
alphabet Σ = (Σk)k∈IN, the set of Σ-trees, denoted by TΣ , is inductively defined
to be the smallest set T such that for every σ ∈ Σk and t1, . . . , tk ∈ T also
σ(t1, . . . , tk) ∈ T . We write α instead of α() if α ∈ Σ0. Given a set T ⊆ TΣ , the
set {σ(t1, . . . , tk) | σ ∈ Σk, t1, . . . , tk ∈ T } is denoted by Σ(T). The size of a tree
t ∈ TΣ, denoted by size(t), is the number of occurrences of symbols of Σ in t.
Let � /∈ Σ be a distinguished nullary symbol. Let Σ′

k = Σk for every k > 0 and
Σ′

0 = Σ0 ∪ {�}. A Σ-context c is a tree of TΣ′ such that � occurs exactly once
in c. The set of all Σ-contexts is denoted by CΣ , and we write c[t] for the tree
that is obtained by replacing in c ∈ CΣ the occurrence of � with t ∈ TΣ.

Let ≡ be an equivalence on a set S. We write [s]≡ for the equivalence class
of s ∈ S and (S/≡) for {[s]≡ | s ∈ S}. We drop the subscript from [s]≡ if ≡
is clear. Finally, if S = TΣ, then ≡ is a congruence if for every σ ∈ Σk and
t1, . . . , tk, u1, . . . , uk ∈ TΣ such that ti ≡ ui for every i ∈ [1, k] also σ(t1, . . . , tk)
≡ σ(u1, . . . , uk).

A (commutative) semiring is an algebraic structure (A, +, ·, 0, 1) comprising
two commutative monoids (A, +, 0) and (A, ·, 1) such that · distributes over +
and 0 is absorbing for · . A semiring (A, +, ·, 0, 1) is a semifield if for every
a ∈ A \ {0} there exists an a−1 ∈ A such that a · a−1 = 1. A tree series ψ is a
mapping ψ : TΣ → A; the set of all such mappings is denoted by A〈〈TΣ〉〉. Given
t ∈ TΣ , we denote ψ(t) also by (ψ, t). The Hadamard product of two tree series
ψ, ϕ ∈ A〈〈TΣ〉〉 is denoted by ψ ·ϕ and given by (ψ ·ϕ, t) = (ψ, t) · (ϕ, t) for every
t ∈ TΣ. Finally, a series ψ ∈ A〈〈TΣ〉〉 is subtree-closed if for every t ∈ TΣ with
(ψ, t) �= 0 also (ψ, u) �= 0 for every subtree u of t.

3 Weighted Tree Automaton

In this section, we recall from [8,5] the central notions of this contribution:
deterministic weighted tree automata (wta) and deterministically recognizable
tree series. For the rest of the paper, let A = (A, +, ·, 0, 1) be a commutative
semifield; in examples we will use the field IR = (IR, +, ·, 0, 1) of real numbers.
In Sect. 4 we show how to learn a deterministic wta from a teacher using the
characterization given by the Myhill-Nerode theorem [5].

Learning Deterministically Recognizable Tree Series — Revisited 221

Definition 1 (see [8, Definitions 3.1 and 3.3]). A weighted tree automa-
ton M is a tuple (Q, Σ, A, F, μ) with

– a finite set Q of states;
– a ranked alphabet Σ of input symbols;
– a set F ⊆ Q of final states; and
– a tree representation (μk)k∈IN such that μk : Σk → AQk×Q.

We call M (bottom-up) deterministic if for every symbol σ ∈ Σk and w ∈ Qk

there exists at most one q ∈ Q such that μk(σ)w,q �= 0.

Note that a wta model with final weights (i.e., with F : Q → A instead of
F ⊆ Q) is considered in [6]. However, for every deterministic “final weight” wta
an equivalent deterministic wta can be constructed [7, Lemma 6.1.4]. Instead of
μ0(α)ε,q with α ∈ Σ0 and ε the empty word, we commonly write μ0(α)q .

Let us present our running-example wta. It is supposed to assign a probability
to (simplified) syntax trees of simple English sentences. If the tree is ill-formed,
then the assigned probability shall be 0. This shall signal that it is rejected.
Moreover, the probability shall diminish with the length of the input sentence.

Example 2. Let Σ = (Σk)k∈IN with
⋃

k∈IN\{0,2} Σk = ∅ and Σ2 = {σ} and
Σ0 ={Alice, Bob, loves, hates, ugly, nice, mean, tall}. Moreover, let (Q, Σ,IR, F,μ)
be the deterministic wta with {NN, VB, ADJ, NP, VP, S} as set Q of states and
F = {S} and the nonzero tree representation entries

0.5 = μ0(Alice)NN = μ0(Bob)NN = μ0(loves)VB = μ0(hates)VB

0.25 = μ0(ugly)ADJ = μ0(nice)ADJ = μ0(mean)ADJ = μ0(tall)ADJ

0.5 = μ2(σ)NN VP,S = μ2(σ)NP VP,S = μ2(σ)VB NN,VP = μ2(σ)VB NP,VP

0.5 = μ2(σ)ADJ NN,NP = μ2(σ)ADJ NP,NP . �

In the sequel, we will sometimes abbreviate the nullary symbols used in Exam-
ple 2 to just their initial letter. Let us continue with the semantics of wta.

Definition 3 (see [8, Definition 3.3]). Let M = (Q, Σ, A, F, μ) be a wta. The
mapping hμ : TΣ → AQ is given by

hμ(σ(t1, . . . , tk))q =
∑

q1···qk∈Qk

μk(σ)q1···qk,q · hμ(t1)q1 · . . . · hμ(tk)qk

for every σ ∈ Σk, q ∈ Q, and t1, . . . , tk ∈ TΣ. The tree series that is recognized
by M , denoted by S(M), is defined for every t ∈ TΣ by (S(M), t) =

∑
q∈F hμ(t)q.

We note that deterministic wta do not essentially use the additive operation.
A tree series ψ ∈ A〈〈TΣ〉〉 is deterministically recognizable if there exists a de-
terministic wta M such that S(M) = ψ. Let us illustrate the definition of the
semantics on a small example.

222 A. Maletti

Example 4. Recall the deterministic wta M of Example 2. Then

(S(M), σ(Alice, σ(loves, Bob))) = 3.125 · 10−2

(S(M), σ(σ(mean, Bob), σ(hates, σ(ugly, Alice)))) = 4.8828125 · 10−4

(S(M), σ(σ(Alice, loves), Bob)) = 0 .

Let us illustrate the computation of the last coefficient. To this end, let t = σ(σ
(A, l), B). Since S is the only final state of M , we obtain that (S(M), t) = hμ(t)S.
We continue with

hμ(σ(σ(A, l), B))S

=
∑

q1q2∈Q2

μ2(σ)q1q2,S · hμ(σ(A, l))q1 · hμ(B)q2

=
∑

q1∈Q

0.5 · hμ(σ(A, l))q1 · μ0(B)VP = 0 .

We showed two parse trees for the sentence “Alice loves Bob”. One of them is ill-
formed and the other is assigned a positive probability. Thus, the sentence would
not be considered ill-formed because a parse tree with nonzero weight exists. �

Let us conclude this section with the Myhill-Nerode theorem [5] for deter-
ministically recognizable tree series. Let ψ ∈ A〈〈TΣ〉〉. The Myhill-Nerode

congruence relation ≡ψ ⊆ TΣ × TΣ is given by t ≡ψ u if and only if there exists
a coefficient a ∈ A\{0} such that (ψ, c[t]) = a·(ψ, c[u]) for every c ∈ CΣ . Finally,
by Lψ we denote {t ∈ TΣ | ∀c ∈ CΣ : (ψ, c[t]) = 0}.

Theorem 5 (see [5, Theorem 2]). A tree series ψ ∈ A〈〈TΣ〉〉 is determinis-
tically recognizable if and only if ≡ψ has finite index. Moreover, every minimal
deterministic wta recognizing ψ has card((TΣ \ Lψ)/≡ψ) states.

4 Learning Algorithm

Next, we show how to learn a minimal deterministic wta for a given determinis-
tically recognizable tree series ψ with the help of a teacher. To this end, we now
fix a tree series ψ ∈ A〈〈TΣ〉〉. Let us clarify the role of the teacher. He is able to
answer two types of questions:

1. Coefficient queries: Given t ∈ TΣ, the teacher supplies (ψ, t).
2. Equivalence queries: Given a wta M , he answers whether S(M) = ψ. If so,

he returns the special token ⊥. Otherwise he returns a counterexample; i.e.,
some tree t ∈ TΣ such that (S(M), t) �= (ψ, t).

This straightforward adaptation of the minimally adequate teacher [2] was pro-
posed in [12] and is based on the adaptation for tree languages [9,11]. Equivalence
queries might be considered unrealistic in a fully automatic setting and might
there be replaced by tests that check a predetermined number of trees in applica-
tions. We will, however, not investigate the ramifications of this approximation.

Learning Deterministically Recognizable Tree Series — Revisited 223

At this point, we will only note that equivalence of deterministic wta is decid-
able [6]. So in the particular case, that the teacher uses a deterministic wta to
represent ψ, both types of queries can automatically be answered.

The following development is heavily inspired by the learning algorithm de-
vised in [12]; in its turn an extension of the learning algorithm of [11] to de-
terministic all-accepting [12] wta. It was argued in [12] that the all-accepting
property is no major restriction because any deterministically recognizable tree
series ψ can be presented as the Hadamard product of a series ψ′ recognized
by a deterministic all-accepting wta and a series ψ′′ recognized by a determin-
istic Boolean (i.e., only weights 0 and 1) wta (for the latter class, learning
algorithms are known [9,11]).

Let us discuss the problems of this approach. First, the decomposition is not
unique; in general, we need to guess coefficients in ψ′ (namely the ones where
ψ is 0). The guessed coefficients affect the size of the minimal deterministic wta
recognizing ψ′. Second, we learn minimial deterministic wta M ′ and M ′′ recog-
nizing ψ′ and ψ′′, respectively, however, the Hadamard product of M ′ and M ′′

is not necessarily a minimal deterministic wta recognizing ψ = ψ′ · ψ′′. Third,
we run two very similar algorithms and then perform a Hadamard product
construction; this is most likely not the most efficient solution.

The first problem (the completion of ψ to a subtree-closed ψ′) can indeed
be easily solved, provided that a representation of ψ by a deterministic wta is
available (on the other hand, provided that a representation as deterministic wta
is available, we could also just minimize the available representation). If no such
representation is available, then the problem is far more complicated, and we
will now show that very simple completions can even lead to deterministically
non-recognizable tree series.

Example 6. Recall the wta M from Example 2. Clearly, S(M) is not yet subtree-
closed, so we complete it to ψ′ ∈ IR〈〈TΣ〉〉 (cf. Definition 10) by

(ψ′, t) =

{
(S(M), t) if (S(M), t) �= 0
1 otherwise

for every t ∈ TΣ. We consider trees of the form σ(m, σ(m, . . . σ(m, B) . . .)). For
every n ∈ IN, let tn be the such obtained tree with n occurrences of m. Clearly,
(ψ′, tn) = 1 for every n ∈ IN. Thus, for every i, j ∈ IN, we have ti ≡ψ′ tj if
and only if (ψ′, c[ti]) = (ψ′, c[tj]) for every c ∈ CΣ because (ψ′, ti) = (ψ′, tj).
Now, we consider the context c = σ(A, σ(l, �)). An easy computation shows that
(ψ′, c[tn]) = 0.55 · (0.5 ·0.25)n for every n ∈ IN. Consequently, ti �≡ψ′ tj whenever
i �= j. Consequently, ≡ψ′ has infinite index and thus ψ′ is not deterministically
recognizable by Theorem 5. �

Our main contribution is a slightly modified learning algorithm that is not re-
stricted to deterministic all-accepting wta. To this end, we first define a restric-
tion of the Myhill-Nerode congruence [5]. Henceforth, we will drop the index ψ
from ≡ψ and Lψ.

224 A. Maletti

Definition 7 (cf. [5, Sect. 5]). Let C ⊆ CΣ. The relation ≡C contains all
(t, u) ∈ TΣ ×TΣ for which there exists an a ∈ A\{0} such that for every context
c ∈ C the equality (ψ, c[t]) = a · (ψ, c[u]) holds.

Clearly, ≡C is an equivalence for every C ⊆ CΣ . Moreover, the relation ≡CΣ

coincides with the Myhill-Nerode congruence [5] and for every t, u ∈ TΣ

and c ∈ CΣ it holds that t ≡{c} u if and only if (ψ, c[t]) �= 0 precisely when
(ψ, c[u]) �= 0 (cf. Condition (MN2) in [5]). In particular, for c = �, we have
that t ≡{�} u if and only if both (ψ, t) and (ψ, u) are nonzero or both zero.
Consequently, the context � will allow us to distinguish final and non-final states.
Finally, let

LC = {t ∈ TΣ | ∀c ∈ C : (ψ, c[t]) = 0}

for every C ⊆ CΣ . Note that L = LCΣ .
An important observation is that there exists a finite set C of contexts such

that ≡C and ≡ coincide, if ≡ has finite index. Moreover, we note that for every
C ⊆ CΣ the index of ≡C is at most as large as the index of ≡. Consequently,
if ≡ has finite index, then also ≡C has finite index. Our learning strategy is to
learn a set C of contexts such that ≡C and ≡ coincide. Next, we present our
main data structure.

Definition 8 (cf. [12, Definition 4.3]). We call a triple (E, T, C) an obser-
vation table if

1. E and T are finite subsets of TΣ such that E ⊆ T ⊆ Σ(E);
2. C is a subset of CΣ with � ∈ C and card(C) ≤ card(E) + card(T) + 1;
3. T ∩ LC = ∅; and
4. card(E) = card(E/≡C).

If, additionally, card(E) = card(T/≡C), then we call (E, T, C) complete.

The only major difference to [12] is found in Condition 2. First, the presence
of the context � in C basically enables us to distinguish final and non-final
states. There is no need for � in [12] because all states will be final. Second,
we changed the size restriction on C from card(C) ≤ card(E) (as in [12])
to card(C) ≤ card(E) + card(T) + 1. In [12], for every e, e′ ∈ E, the coeffi-
cient a of Definition 7 (required to show that e ≡C e′) can always be determined
with the help of the context �. Clearly, card(E)contexts are then sufficient to
separate the elements of E. In our more general setting, we cannot always deter-
mine the coefficient a of Definition 7 with the help of the context �. Rather, the
contexts of C shall not only separate the elements of E, but shall also serve as
explicit evidence that no tree in T (and thus also in E) is in LC . This evidence
is needed to determine the right coefficient in Definition 7 and is, consequently,
used in Definition 10 to fix the right weight.

The third condition encodes the avoidance of trees t such that no supertree
of t can be accepted (dead states; see [12]). This condition is only checked for
those contexts that we accumulated in C.

Learning Deterministically Recognizable Tree Series — Revisited 225

Proposition 9. Let L �= ∅, and let C ⊆ CΣ be such that ≡C coincides with ≡.
Then LC = L.

Proof. The direction L ⊆ LC is trivial. We prove the remaining direction by
contradiction. Let t ∈ LC \ L. Thus, (ψ, c[t]) = 0 for every c ∈ C, and clearly,
t ≡C u for every u ∈ L. However, there exists a context c ∈ CΣ \ C such that
(ψ, c[t]) �= 0 because t /∈ L. This yields that t �≡ u for every u ∈ L. Thus, we can
derive the contradiction that ≡C and ≡ do not coincide because L �= ∅. ��

The condition L �= ∅ is necessary in the above statement because the partition
induced by ≡ (and thus also ≡C) does not distinguish between an equivalence
class containing only one tree, which happens to be in L, and an equivalence
class containing only one tree, which is not in L.

The fourth and completeness condition in Definition 8 are equivalent to:
e �≡C e′ for every two distinct e, e′ ∈ E, and for every t ∈ T there exists an
e ∈ E such that t ≡C e, respectively. Clearly, such an element e is uniquely
determined by the former condition. In the sequel, given a complete observa-
tion table T = (E, T, C) and t ∈ T we write T (t) for the unique e ∈ E such
that e ≡C t. Clearly, T (e) = e for every e ∈ E (see [12, Lemma 4.4]). Next we
show how to construct a deterministic wta given a complete observation table.
To achieve this, we modify the construction [5] of a deterministic wta from the
Myhill-Nerode congruence ≡.

Definition 10 (cf. [5, Lemma 8 and Page 9]). Let T = (E, T, C) be a
complete observation table. Let ψ(T) : TΣ → A \ {0} be such that for every
t ∈ TΣ

(ψ(T), t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ψ, t) if (ψ, t) �= 0
(ψ, c[t]) · (ψ, c[T (t)])−1 if (ψ, t) = 0 and t ∈ T and

(ψ, c[t]) �= 0 for some c ∈ C

1 otherwise.

Here, we only consider a baseline implementation; an efficient implementation
could avoid many queries to the teacher [10] and store the required information
in an extended observation table. Note that, for example, a suitable context for
the second case in Definition 10 is observed by our algorithm (see Algorithms
1 and 3) when t is added to the observation table; it could thus be stored for
efficient retrieval.

Some notes on the well-definedness of ψ(T) are necessary. First, the condition
(ψ, t) �= 0 can be checked easily by a coefficient query. Second, t ∈ T implies
t /∈ LC by the third condition of Definition 8. Thus, there trivially exists a
context c ∈ C such that (ψ, c[t]) �= 0. It follows that (ψ, c[T (t)]) �= 0 because
t ≡C T (t) and hence t ≡{c} T (t). Consequently, the inverse is well-defined. It
remains to show that the result is independent of the selection of the context c.
To this end, let c′ ∈ C be another context such that (ψ, c′[t]) �= 0. Following
the above argumentation, (ψ, c′[T (t)]) �= 0. Since t ≡C T (t), there exists a

226 A. Maletti

coefficient a ∈ A \ {0} such that (ψ, c′′[t]) = a · (ψ, c′′[T (t)]) for every c′′ ∈ C. It
follows that

(ψ, c[t]) · (ψ, c[T (t)])−1 = a = (ψ, c′[t]) · (ψ, c′[T (t)])−1 .

Definition 11 (cf. [5, Definition 4]). Let T = (E, T, C) be a complete obser-
vation table. We construct the wta M(T) = (E, Σ, A, F, μ) such that

– F = {e ∈ E | (ψ, e) �= 0};
– for every σ ∈ Σk and e1, . . . , ek ∈ E such that σ(e1, . . . , ek) ∈ T

μk(σ)e1···ek,T (σ(e1,...,ek)) = (ψ(T), σ(e1, . . . , ek)) ·
k∏

i=1

(ψ(T), ei)−1

– and all remaining entries in μ are 0.

Let us immediately observe some properties of the constructed wta. Clearly,
M(T) is deterministic. Moreover, S(M(T)) coincides with ψ on all trees of T .

Lemma 12 (cf. [12, Lemma 4.5]). Let T = (E, T, C) be a complete observa-
tion table. Then (S(M(T)), t) = (ψ, t) for every t ∈ T .

Proof. Suppose that M(T) = (E, Σ, A, F, μ). We first prove that

hμ(t)T (t) = (ψ(T), t) (1)

for every t ∈ T . Let t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ E. By the
induction hypothesis, we have hμ(ti)T (ti) = (ψ(T), ti) for every i ∈ [1, k]. Clearly,
hμ(ti)e = 0 for all states e ∈ E with e �= T (ti) because M(T) is deterministic
(see [8, Lemma 3.6]). Then

hμ(σ(t1, . . . , tk))T (σ(t1,...,tk))

=
∑

e1,...,ek∈E

μk(σ)e1···ek,T (σ(t1,...,tk)) ·
k∏

i=1

hμ(ti)ei

= μk(σ)T (t1)···T (tk),T (σ(t1,...,tk)) ·
k∏

i=1

(ψ(T), ti)

= μk(σ)t1···tk,T (σ(t1,...,tk)) ·
k∏

i=1

(ψ(T), ti)

= (ψ(T), σ(t1, . . . , tk)) ·
k∏

i=1

(ψ(T), ti)−1 ·
k∏

i=1

(ψ(T), ti)

= (ψ(T), σ(t1, . . . , tk))

where the second equality is by the induction hypothesis; the third is due to
the fact that t1, . . . , tk ∈ E; and the fourth is by the definition of μ (see
Definition 11).

Learning Deterministically Recognizable Tree Series — Revisited 227

Algorithm 1. Learn a minimal deterministic wta recognizing ψ

T ← (∅, ∅, {�}) {initial observation table}
2: loop

M ← M(T) {construct new wta}
4: t ← Equal?(M) {ask equivalence query}

if t = ⊥ then
6: return M {return the approved wta}

else
8: T ← Extend(T , t) {extend the observation table}

Thus, hμ(t)T (t) �= 0. We now return to the main statement and complete
the proof by distinguishing two cases: (ψ, t) = 0 and (ψ, t) �= 0. In the former
case, (ψ, T (t)) = 0 because T (t) ≡C t and thus T (t) ≡{�} t (since � ∈ C).
Consequently, T (t) /∈ F and (S(M(T)), t) = 0. In the latter case, an analoguous
reasoning leads to (ψ, T (t)) �= 0 and T (t) ∈ F . Consequently, (S(M(T)), t)=
hμ(t)T (t) = (ψ(T), t) = (ψ, t). ��

In Algorithm 1 we show the principal structure of the learner. The bulk of work
is done in Extend, which is shown in Algorithm 3. We start with the initial
empty observation table (∅, ∅, {�}) and iteratively query the teacher for coun-
terexamples and update our complete observation table with the returned coun-
terexample. Once the teacher approves our wta, we simply return it. Clearly, the
returned wta recognizes ψ because the teacher certifies this. In Sect. 5 we show
an example application of the learning algorithm to learn the series recognized
by the wta of Example 2. We say that an algorithm works correctly if whenever
the pre-conditions (Require) are met at the beginning of the algorithm, then
the algorithm terminates and the post-conditions (Ensure) hold at the point of
return.

Theorem 13 (see [12, Theorem 5.4]). Let us suppose that Extend works
correctly and ψ is deterministically recognizable. Then Algorithm 1 terminates
and returns a minimal deterministic wta recognizing ψ.

Proof. Let ψ be deterministically recognizable. Then ≡ has finite index by
Theorem 5. Let l = card(TΣ/≡). We already remarked that, for every C ⊆ CΣ ,
the index of ≡C is at most l. This yields that for every observation table (E, T, C)
we have card(E) � l because

card(E) = card(E/≡C) � card(TΣ/≡C) � card(TΣ/≡) = l .

It is easily checked that Extend is always called with a complete observa-
tion table and a counterexample as parameters. Since card(E) and card(T) are
bounded, there can only be finitely many calls to Extend. Thus, Algorithm 1
terminates. Moreover, the returned wta, say M(T), is approved by the teacher,
so we have S(M(T)) = ψ. By the construction of M(T), we know that M(T)
has at most l states. Consequently, M(T) is a minimal deterministic wta recog-
nizing ψ by Theorem 5. ��

228 A. Maletti

Algorithm 2. The Complete function
Require: an observation table (E, T, C)

Ensure: return a complete observation table (E′, T, C) such that E ⊆ E′

for all t ∈ T do
2: if t �≡C e for every e ∈ E then

E ← E ∪ {t}
4: return (E, T, C)

Next, we describe the functionality of Complete, which is shown in Algorithm 2.
This function takes an observation table (E, T, C) and returns a complete obser-
vation table (E′, T, C) with E ⊆ E′. We simply check for every t ∈ T whether
there exists an e ∈ E such that t ≡C e. If this is not the case, then we add t
to E. It is clear that Complete works correctly.

Finally, let us discuss the Extend function, which is shown in Algorithm 3.
We search for a minimal subtree that is still a counterexample using a technique
called contradiction backtracking [18]. Let T = (E, T, C) be a complete obser-
vation table, M(T) = (E, Σ, A, F, μ) be the constructed wta, and t ∈ TΣ be a
counterexample; i.e., a tree t such that (S(M(T)), t) �= (ψ, t). We first decom-
pose t into a context c ∈ CΣ and a tree u that is not in E but whose direct
subtrees are all in E. In some sense, this is a minimal offending subtree because
the wta works correctly on all trees of T by Lemma 12. Moreover, such a subtree
must exist because t is a counterexample.

Now we distinguish two cases. If u was already seen (i.e., u ∈ T), then
u ≡C T (u). By Lemma 12, the wta M(T) works correctly on u. Thus the error
is made when processing the context c. We test whether c separates u and T (u).
Provided that u ≡C∪{c} T (u), then u and T (u) behave equally in all contexts
of C ∪ {c} and we continue our search for the counterexample with c[T (u)].

In all other cases, either u and T (u) should be separated or u was not seen
before (i.e., is not already present in T). In the latter case, hμ(u)e = 0, and
consequently, also hμ(c[u])e = 0 for every e ∈ E (see [8, Lemma 3.7]). Hence
(S(M(T)), c[u]) = 0 and (ψ, c[u]) �= 0. Thus we claim that in T ′ = (E, T ∪ {u},
C ∪ {c}) is an observation table and return the completion of T ′. If u /∈ T , then
(ψ, c[u]) �= 0 and thus u /∈ LC∪{c}. Moreover, ≡C∪{c} ⊆ ≡C and either we add u
to T (if u /∈ T) or we add u to E (if u ∈ T but u �≡C∪{c} T (u)). Thus the
post-condition of the algorithm and the size restriction on the set of contexts are
met.

The next lemma will rely on two straightforward lemmata; their proofs offer
little insight and can thus be skipped on first reading.

Lemma 14 (see [5, Theorem 1]). Let M = (Q, Σ, A, F, μ) be a deterministic
wta, and let t, u ∈ TΣ be such that hμ(t)p �= 0 and hμ(u)p �= 0 for some state
p ∈ Q. Then for every context c ∈ CΣ and state q ∈ Q

hμ(c[t])q · hμ(t)−1
p = hμ(c[u])q · hμ(u)−1

p .

Learning Deterministically Recognizable Tree Series — Revisited 229

Algorithm 3. The Extend function
Require: a complete observation table T = (E, T, C) and a counterexample t ∈ TΣ

Ensure: return a complete observation table T ′ = (E′, T ′, C′)
such that E ⊆ E′ and T ⊆ T ′ and one inclusion is strict

Decompose t into t = c[u] where c ∈ CΣ and u ∈ Σ(E) \ E
2: if u ∈ T and u ≡C∪{c} T (u) then

return Extend(T , c[T (u)]) {normalize and continue}
4: else

return Complete(E,T ∪ {u}, C ∪ {c}) {add u and c}

Proof. We prove the statement by induction on the context c. Let c = �.
Then hμ(c[t])q = hμ(t)q and hμ(c[u])q = hμ(u)q. We now distinguish two cases:
(i) q = p and (ii) q �= p. In the former case, we immediately obtain

hμ(t)p · hμ(t)−1
p = 1 = hμ(u)p · hμ(u)−1

p .

In the latter case, hμ(t)q = 0 = hμ(u)q because M is deterministic (see [8,
Lemma 3.6]). Consequently,

hμ(t)q · hμ(t)−1
p = 0 = hμ(u)q · hμ(u)−1

p .

In the induction step we assume that c = σ(t1, . . . , ti−1, c
′, ti+1, . . . , tk) for

some σ ∈ Σk, context c′ ∈ CΣ , position i ∈ [1, k], and t1, . . . , tk ∈ TΣ. Then

hμ(σ(t1, . . . , ti−1, c
′, ti+1, . . . , tk)[t])q · hμ(t)−1

p

= hμ(σ(t1, . . . , ti−1, c
′[t], ti+1, . . . , tk))q · hμ(t)−1

p

=
(∑

q1,...,qk∈Q

μk(σ)q1···qk,q · hμ(c′[t])qi ·
∏

i∈[1,k]\{i}
hμ(ti)qi

)
· hμ(t)−1

p

=
(∑

q1,...,qk∈Q

μk(σ)q1···qk,q · hμ(c′[u])qi ·
∏

i∈[1,k]\{i}
hμ(ti)qi

)
· hμ(u)−1

p

= hμ(σ(t1, . . . , ti−1, c
′[u], ti+1, . . . , tk))q · hμ(u)−1

p

= hμ(σ(t1, . . . , ti−1, c
′, ti+1, . . . , tk)[u])q · hμ(u)−1

p

where the third equality holds by the induction hypothesis and distributivity.
��

Lemma 15. Let T = (E, T, C) be an observation table, and let t, u ∈ T be such
that t ≡C u. For every c ∈ C

(ψ, c[t]) · (ψ(T), t)−1 = (ψ, c[u]) · (ψ(T), u)−1 .

Proof. By t ≡C u there exists an a ∈ A \ {0} such that for every context c′ ∈ C
we have (ψ, c′[t]) = a · (ψ, c′[u]). Consequently,

(ψ, t) = a · (ψ, u) and (ψ, c[t]) = a · (ψ, c[u]) . (2)

230 A. Maletti

1. First, let (ψ, c[t]) = 0. By (2) also (ψ, c[u]) = 0, which proves the statement.
2. Second, let (ψ, c[t]) �= 0 and (ψ, t) �= 0. Then we can again conclude with the

help of (2) that (ψ, c[u]) �= 0 and (ψ, u) �= 0. Further,

(ψ, c[t]) · (ψ(T), t)−1 = (ψ, c[t]) · (ψ, t)−1 = (ψ, c[u]) · (ψ, u)−1

= (ψ, c[u]) · (ψ(T), u)−1

where the second equality holds by (2).
3. Finally, let (ψ, c[t]) �= 0 and (ψ, t) = 0. We again immediately note that

(ψ, c[u]) �= 0 and (ψ, u) = 0 by (2). Since t, u /∈ LC ,

(ψ, c[t]) · (ψ(T), t)−1 = (ψ, c[t]) ·
(
(ψ, c[t]) · (ψ, c[T (t)])−1)−1

= (ψ, c[T (t)]) = (ψ, c[T (u)])

= (ψ, c[u]) ·
(
(ψ, c[u]) · (ψ, c[T (u)])−1)−1 = (ψ, c[u]) · (ψ(T), u)−1

where the third equality holds because t ≡C u. ��

Now we are ready with the two auxiliary lemmata. It remains to prove that the
recursive call of Extend meets the pre-conditions of Extend. It is clear, that
T is a complete observation table, but we need to prove that c[T (u)] is also a
counterexample. This is achieved in the next lemma.

Lemma 16. Let T = (E, T, C) be a complete observation table, u ∈ T , and
c ∈ CΣ such that u ≡C∪{c} T (u). If (S(M(T)), c[u]) �= (ψ, c[u]), then also
(S(M(T)), c[T (u)]) �= (ψ, c[T (u)]).

Proof. Let M(T) = (E, Σ, A, F, μ). We distinguish two cases: First, let hμ(c[u])q

= 0 for every q ∈ Q. Then also hμ(c[T (u)])q = 0 for every q ∈ Q because M(T)
is deterministic and hμ(u)T (u) �= 0 and hμ(T (u))T (u) �= 0 by Lemma 12 (see
also Lemma 14). Clearly, (S(M(T)), c[u]) = 0 and (S(M(T)), c[T (u)]) = 0.
Consequently, (ψ, c[u]) �= 0 and (ψ, c[T (u)]) �= 0 because u ≡C∪{c} T (u). This
proves the statement in the first case.

Second, let q ∈ Q be such that hμ(c[u])q �= 0. Note that hμ(u)T (u) �= 0 and
hμ(T (u)T (u) �= 0 by Lemma 12. Then

(S(M(T)), c[u]) · hμ(u)−1
T (u) =

∑
p∈{q}∩F

hμ(c[u])p · hμ(u)−1
T (u)

=
∑

p∈{q}∩F

hμ(c[T (u)])p · hμ(T (u))−1
T (u)

= (S(M(T)), c[T (u)]) · hμ(T (u))−1
T (u) (3)

where the second equality is by Lemmata 12 and 14. We now reason as follows.

(S(M(T)), c[T (u)])

= (S(M(T)), c[u]) · hμ(T (u))T (u) · hμ(u)−1
T (u) by (3)

Learning Deterministically Recognizable Tree Series — Revisited 231

= (S(M(T)), c[u]) · (ψ(T), T (u)) · (ψ(T), u)−1 by (1)

�= (ψ, c[u]) · (ψ(T), T (u)) · (ψ(T), u)−1

= (ψ, c[T (u)]) by Lemma 15 ��

The previous lemma justifies the recursive call of Extend. It remains to check
whether the recursion terminates (see [12, Lemma 5.3]). For this we consider
a call Extend(T , t) triggered in Line 8 of Algorithm 1. Since the recursive
call of Extend also has T as parameter, we now fix a complete observation
table T = (E, T, C) for all invocations of Extend that are triggered by the
considered call Extend(T , t). Moreover, let v : TΣ → IN be the mapping that
assigns to every u ∈ TΣ the number of occurrences of subtrees of u that are
not in E. Next we show that every call in our chain of invocations strictly
decreases v(t) where t is the second parameter of the call to Extend. Suppose
we now consider the call Extend(T , t), and let t = c[u] be the decomposition as
given in Line 1 of Algorithm 3. Without regard of the occurrence of the recursive
call to Extend, it is of the form Extend(T , c[T (u)]). By Line 1 in Algorithm 3
we have u ∈ Σ(E) \ E. So v(t) = size(c) and v(c[T (u)]) = size(c) − 1 because
T (u) ∈ E and E is trivially subtree-closed (i.e., if e ∈ E then also all subtrees
of e are in E). Thus the recursion must terminate and hence each call of Extend

terminates.

Corollary 17 (of Theorem 13). Provided that ψ is deterministically recog-
nizable, Algorithm 1 terminates and returns a minimal deterministic wta recog-
nizing ψ.

5 An Example

Let us show, how the algorithm learns the tree series ψ recognized by the
wta of Example 2. We start (Line 1) with the initial empty observation ta-
ble T0 = (∅, ∅, {�}). The constructed (Line 3) wta M0 = (∅, Σ, A, ∅, μ) recog-
nizes the tree series that maps every tree to 0. We have seen in Example 4 that
(ψ, σ(A, σ(l, B))) = 3.125 ·10−2, so suppose the equivalence query (Line 4) is an-
swered with t1 = σ(A, σ(l, B)). Consequently, we will call Extend(T0, t1). Inside
the call, we first decompose t1 into c1 = σ(�, σ(l, B)) and u1 = A. Consequently,
we return

Complete(∅, {u1}, {�, c1}) = ({u1}, {u1}, {�, c1}) = T1

in Line 8 of Algorithm 3. We thus finished the first loop in Algorithm 1.
The wta M(T1) will only have the non-final state A and the nonzero tree

representation entry μ0(A)A = 1. Hence t1 is still a counterexample, and we
might assume that t1 is returned by the teacher. Thus we call Extend(T1, t1).
There we first decompose t1 into the context c2 = σ(A, σ(�, B)) and u2 = l.
Consequently, the call returns

Complete({u1}, {u1, u2}, {�, c1, c2}) = ({u1, u2}, {u1, u2}, {�, c1, c2})

232 A. Maletti

because (ψ, σ(l, σ(l, B))) = 0. Let T2 be the complete observation table displayed
above. This concludes the second iteration.

In the third iteration, we can still use t1 as counterexample and the decom-
position c3 = σ(A, σ(l, �)) and u3 = B. The call to Extend then returns
T3 = ({u1, u2}, {u1, u2, u3}, {�, c1, c2, c3}) because we have A ≡{�,c1,c2,c3} B.
Another iteration with the counterexample t1 again yields the decomposition
c3 and u3. Now u3 was already seen before and A ≡{�,c1,c2,c3} B, so we re-
turn Extend(T3, σ(A, σ(l, A))). In that call, we decompose the second argument
into c4 = σ(A, �) and u4 = σ(l, A) and return

Complete({u1, u2}, {u1, . . . , u4}, {�, c1, . . . , c4})
= ({u1, u2, u4}, {u1, . . . , u4}, {�, c1, . . . , c4}) = T4 .

We will not demonstrate the construction of the wta M(T4) but will give an
elaborate example at the end. For the moment, rest assured that t1 is still a coun-
terexample (because M(T4) has no final states). The decomposition of t1 will be
c3 and u3. As previously, this yields the recursive call Extend(T4, σ(A, σ(l, A))).
Now the decomposition will be c5 = � and u5 = σ(A, σ(l, A)) and Extend will
return

Complete({u1, u2, u4}, {u1, . . . , u5}, {�, c1, . . . , c4})
= ({u1, u2, u4, u5}, {u1, . . . , u4}, {�, c1, . . . , c4}) = T5 .

Note that u5 is a final state of M(T5) and that t1 is no longer a counterexample. If
we continue with t2 = σ(A, σ(h, σ(u, B))) until it is no longer a counterexample,
then we obtain

T8 = ({u1, u2, u4, u5, u}, {u1, . . . , u5, h, u, σ(u, A)},

{�, c1, . . . , c4, σ(u1, σ(�, σ(u, u3))), σ(u1, σ(u2, σ(�, u3)))}) .

Next we select t3 = σ(σ(t, σ(m, A)), σ(l, σ(n, B))) as counterexample and con-
tinue in the same manner. We obtain T11 as

({A, l, σ(l, A), σ(A, σ(l, A)), u}, {u1, . . . , u5, h, u, σ(u, A), m, t, n}, C′)

for some C′ ⊆ CΣ . At last, let us construct the wta M(T11). By Definition 11
we obtain the wta (Q, Σ, A, F, μ) with

– Q = {A, l, σ(l, A), σ(A, σ(l, A)), u}
– F = {σ(A, σ(l, A))}; and
– the nonzero tree representation entries

1 = μ0(A)A = μ0(B)A = μ0(l)l = μ0(h)l
1 = μ0(n)u = μ0(t)u = μ0(u)u = μ0(m)u
1 = μ2(σ)l A,σ(l,A)

0.125 = μ2(σ)u A,A

0.03125 = μ2(σ)A σ(l,A),σ(A,σ(l,A)) .

Learning Deterministically Recognizable Tree Series — Revisited 233

Clearly, M(T11) recognizes exactly ψ. In the next iteration, the teacher thus
approves M(T11). The returned wta has only 5 states (compared to the 6 states
of the wta in Example 2). By Corollary 17 the returned wta is minimal. Thus,
the learning algorithm might also be used to minimize deterministic wta but it
is rather inefficient at that task.

6 Complexity Analysis

Our formal runtime complexity analysis follows the approach of [11]. In [12] a
similar analysis is outlined but not actually shown. Our computation model will
be the random access machine and we assume that the multiplicative semifield
operations (including taking the inverse and equality tests) and the queries to
the teacher can be performed in constant time. Finally, we assume that the
algorithm terminates with the deterministic wta (Q, Σ, A, F, μ). In the sequel,
let

m = card({(σ, q, q1, . . . , qk) | μk(σ)q1···qk,q �= 0})

and n = card(Q). Let r = max{k | Σ(k) �= ∅}, and let T = (E, T, C) be a
complete observation table encountered during the run of the algorithm. Let us
start with the complexity of Complete.

Proposition 18 (cf. [11, Lemma 4.7]). Within time O(mn) the callComplete
(E, T ∪ {u}, C ∪ {c}) returns.

Proof. First we check for each t ∈ T \ E whether the new context c splits
t and T (t); i.e., whether t ≡C∪{c} T (t). Suppose that with each t ∈ T \ E
we store the coefficient a required in Definition 7 for t ≡C T (t). Now we simply
need to check whether this coefficient also qualifies for t ≡{c} T (t). These simple
checks require O(m) because card(T) ≤ m.

Should the check fail for some t1 and t2 that previously have been in the same
equivalence class, then we need to compare them to each other. For each t these
comparisons can amount up to O(n) because card(E) ≤ n.

Now it only remains to classify the new tree u provided that u /∈ T . We simply
compare u to each identified representative. Clearly, this requires us to check all
contexts C ∪ {c}. This takes O(n(m + n)), which can also be given as O(2mn)
because n ≤ m. Thus the overall complexity is O(mn). ��

With the previous proposition we can state the complexity of a call to Extend.

Proposition 19 (cf. [11, Lemma 4.6]). The call Extend(T , t) returns in
time O(size(t)mnr).

Proof. We already argued that at most size(t) recursive calls might be triggered
by this call. In each invocation, we need to perform the decomposition into c[u].
In [11, Lemma 4.5], it is shown how this can be achieved in time O(nr). Thus it
is also in O(mr). Using a similar technique, we can also test whether u ∈ T in
time O(mr). Finally, if u ∈ T , then the check u ≡C∪{c} T (u) can be performed

234 A. Maletti

in constant time because we can assume that a pointer to T (u) and the required
coefficient for Definition 7 is stored with u. Thus, we only need to confirm that
coefficient for the new context c. Altogether, this yields that the call to Extend

returns in time O(size(t)mnr). ��

Proposition 20 (cf. [11, Lemma 4.7]). The wta M(T) can be constructed
in time O(mr).

Let s be the size of the largest counterexample returned by the teacher. Our
simple and straightforward complexity analysis yields the following overall com-
plexity (cf. O(mn2(n + s)r) for the algorithm of [12]).

Theorem 21. Our devised learning algorithm runs in time O(sm2nr).

Proof. We already saw that at most m + n ≤ 2m calls to Extend can happen
before termination. Thus, we obtain the statement. ��

Acknowledgements

The author would like to thank Heiko Vogler and Frank Drewes for lively dis-
cussions. Further, the author wants to express cordial thanks to the referees of
the draft version of this paper. Their insight and criticism enabled the author to
improve the paper.

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Inform.
and Control 45(2), 117–135 (1980)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inform. and
Comput. 75(2), 87–106 (1987)

3. Angluin, D.: Queries and concept learning. Machine Learning 2(4), 319–342 (1987)
4. Angluin, D.: Queries revisited. In: Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT

2001. LNCS (LNAI), vol. 2225, pp. 12–31. Springer, Heidelberg (2001)
5. Borchardt, B.: The Myhill-Nerode theorem for recognizable tree series. In: Ésik,

Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 146–158. Springer, Heidelberg
(2003)

6. Borchardt, B.: A pumping lemma and decidability problems for recognizable tree
series. Acta Cybernet. 16(4), 509–544 (2004)

7. B. Borchardt. The Theory of Recognizable Tree Series. PhD thesis, Technische
Universität Dresden (2005)

8. Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata.
J. Autom. Lang. Combin. 8(3), 417–463 (2003)

9. Drewes, F., Högberg, J.: Learning a regular tree language from a teacher. In: Ésik,
Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 279–291. Springer, Heidelberg
(2003)

10. Drewes, F., Högberg, J.: Extensions of a MAT learner for regular tree languages. In:
Proc. 23rd Annual Workshop of the Swedish Artificial Intelligence Society, Ume̊a
University, pp. 35–44 (2006)

Learning Deterministically Recognizable Tree Series — Revisited 235

11. Drewes, F., Högberg, J.: Query learning of regular tree languages: How to avoid
dead states. Theory of Comput. Syst. 40(2), 163–185 (2007)

12. Drewes, F., Vogler, H.: Learning deterministically recognizable tree series. J. Au-
tomata, Languages and Combinatorics, (to appear, 2007)

13. Eisner, J.: Simpler and more general minimization for weighted finite-state au-
tomata. In: Human Language Technology Conf. of the North American Chapter of
the Association for Computational Linguistics, pp. 64–71 (2003)

14. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
15. Gécseg, F., Steinby, M.: Tree languages. In: Handbook of Formal Languages, ch.

1, vol. 3, pp. 1–68. Springer, Heidelberg (1997)
16. Gold, E.M.: Language identification in the limit. Inform. and Control 10(5), 447–

474 (1967)
17. Habrard, A., Oncina, J.: Learning multiplicity tree automata. In: Sakakibara, Y.,

Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI),
vol. 4201, pp. 268–280. Springer, Heidelberg (2006)

18. Shapiro, E.Y.: Algorithmic Program Debugging. ACM Distinguished Dissertation.
MIT Press, Cambridge (1983)

The Second Eigenvalue of Random Walks On

Symmetric Random Intersection Graphs�

Sotiris Nikoletseas1,2, Christoforos Raptopoulos1,2, and Paul G. Spirakis1,2

1 Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
2 University of Patras, 26500 Patras, Greece

nikole@cti.gr, raptopox@ceid.upatras.gr, spirakis@cti.gr

Abstract. In this paper we examine spectral properties of random in-
tersection graphs when the number of vertices is equal to the number of
labels. We call this class symmetric random intersection graphs. We ex-
amine symmetric random intersection graphs when the probability that a
vertex selects a label is close to the connectivity threshold τc. In particu-
lar, we examine the size of the second eigenvalue of the transition matrix
corresponding to the Markov Chain that describes a random walk on an
instance of the symmetric random intersection graph Gn,n,p. We show
that with high probability the second eigenvalue is upper bounded by
some constant ζ < 1.

1 Introduction

Random graphs are interesting combinatorial objects that were introduced by
P. Erdös and A. Rényi and still attract a huge amount of research in the com-
munities of Theoretical Computer Science, Algorithms, Graph Theory and Dis-
crete Mathematics. This continuing interest is due to the fact that, besides their
mathematical beauty, such graphs are very important, since they can model in-
teractions and faults in networks and also serve as typical inputs for an average
case analysis of algorithms.

There exist various models of random graphs. The most famous is the Gn,p

random graph, a sample space whose points are graphs produced by randomly
sampling the edges of a graph on n vertices independently, with the same proba-
bility p. Other models have also been quite a lot investigated: Gn,r (the “random
regular graphs”, produced by randomly and equiprobably sampling a graph from
all regular graphs of n vertices and vertex degree r) and Gn,M (produced by ran-
domly and equiprobably selecting an element of the class of graphs on n vertices
having M edges). For an excellent survey of these models, see [1,2].

� This work was partially supported by the IST Programme of the European Union
under contact number IST-2005-15964 (AEOLUS) and by the Programme PENED
under contact number 03ED568, co-funded 75% by European Union – European
Social Fund (ESF), 25% by Greek Government – Ministry of Development – Gen-
eral Secretariat of Research and Technology (GSRT), and by Private Sector, under
Measure 8.3 of O.P. Competitiveness – 3rd Community Support Framework (CSF).

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 236–246, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Second Eigenvalue of Random Walks 237

In this work we give a probabilistic (i.e. that holds with high probability)
upper bound on the second eigenvalue of the Markov Chain describing the ran-
dom walk on an instance of a relatively recent model of random graphs, namely
the random intersection graphs model introduced by Karoński, Sheinerman and
Singer-Cohen [11,20]. Also, Godehardt and Jaworski [9] considered similar mod-
els. In the Gn,m,p, to each of the n vertices of the graph, a random subset of
a universal set of m elements is assigned, by independently choosing elements
with the same probability p. Two vertices u, v are then adjacent in the Gn,m,p

graph if and only if their assigned sets of elements have at least one element in
common.

Importance and Motivation. First of all, we note that (as proved in [12])
any graph is an intersection graph. Thus, the Gn,m,p model is very general.
Furthermore, for some ranges of the parameters m, p (m = nα, α > 6) the spaces
Gn,m,p and Gn,p̂ are equivalent (as proved by Fill, Sheinerman and Singer-Cohen
[8], showing that in this range, the total variation distance between the graph
random variables has limit 0).

Second, random intersection graphs may model real-life applications more ac-
curately (compared to the Gn,p̂ Bernoulli random graphs case). In fact, there
are practical situations where each communication agent (e.g. a wireless node)
gets access only to some ports (statistically) out of a possible set of commu-
nication ports. When another agent also selects a communication port, then
a communication link is implicitly established and this gives rise to communi-
cation graphs that look like random intersection graphs. Even epidemiological
phenomena (like spread of disease) tend to be more accurately captured by this
“proximity-sensitive” random intersection graphs model. Other applications may
include oblivious resource sharing in a distributed setting, interactions of mobile
agents traversing the web etc.

Finally, we have to mention that the second eigenvalue of a random walk
on some graph is a very important quantity. More specifically, it is well known
that random walks whose second largest eigenvalue is sufficiently less than 1
are “rapidly mixing”, i.e. they get close (in terms of the variation distance)
to the steady state distribution after only a polylogarithmic (in the number of
vertices/states) number of steps (see e.g. [19]); this has important algorithmic
applications e.g. in efficient random generation and counting of combinatorial
objects. Also, such graphs are expander graphs and can be used as basic building
blocks in optimal network design.

Related Work. Random intersection graphs have recently attracted a growing
research interest. The question of how close Gn,m,p and Gn,p̂ are for various
values of m, p has been studied by Fill, Sheinerman and Singer-Cohen in [8]. In
[14], new models of random intersection graphs have been proposed, along with
an investigation of both the existence and efficient finding of close to optimal
independent sets. The authors of [7] find thresholds (that are optimal up to a
constant factor) for the appearance of hamilton cycles in random intersection
graphs. The efficient construction of hamilton cycles is studied in [17]. Also, by

238 S. Nikoletseas, C. Raptopoulos, and P.G. Spirakis

using a sieve method, Stark [21] gives exact formulae for the degree distribution
of an arbitrary fixed vertex of Gn,m,p for a quite wide range of the parameters
of the model.

Geometric proximity between randomly placed objects is also nicely captured
by the model of random geometric graphs (see e.g. [4,5,16]) and important vari-
ations (like random scaled sector graphs, [6]). Other extensions of random graph
models (such as random regular graphs) and several important combinatorial
properties (connectivity, expansion, existence of a giant connected component)
are performed in [13,15].

Our Contribution. As proved in [8], the spaces Gn,m,p and Gn,p̂ are equivalent
when m = nα, with α > 6, in the sense that their total variation distance tends to
0 as n goes to ∞. Also, the authors in [17] show that, when α > 1, for any monotone
increasing property there is a direct relation (including a multiplicative constant)
of the corresponding thresholds of the property in the two spaces. So, it is very
important to investigate what is happening when α ≤ 1 where the two spaces are
statistically different. In this paper, we consider the regime α = 1. We call this case
symmetric because the number of labels m is equal to the number of vertices n. Let
λ1 be the second largest eigenvalue of the transition matrix corresponding to the
Markov Chain that describes the random walk on an instance of the symmetric
random intersection graph Gn,n,p, with p = 4 lnn

n (i.e. p is close to the connectivity

threshold in this case, which is shown to be τc
def
= ln n

n in [20]). We show here that,
with high probability, λ1 is upper bounded away from 1 by some constant. In order
to prove this we use two related Markov Chains whose bounds on their second
eigenvalues can be used to give our desired bound.

2 Notation and Definitions

Let Bin(n, p) denote the Binomial distribution with parameters n and p. We
first formally define the random intersection graphs model.

Definition 1 (Random Intersection Graph). Consider a universe M =
{1, 2, . . . , m} of elements and a set of vertices V (G) = {v1, v2, . . . , vn}. If we as-
sign independently to each vertex vj, j = 1, 2, . . . , n, a subset Svj of M choosing
each element i ∈ M independently with probability p and put an edge between
two vertices vj1 , vj2 if and only if Svj1

∩ Svj2
�= ∅, then the resulting graph is an

instance of the random intersection graph Gn,m,p. In this model we also denote
by Ll the set of vertices that have chosen label l ∈ M . The degree of v ∈ V (G)
will be denoted by dG(v). Also, the set of edges of Gn,m,p will be denoted by e(G).

Consider now the bipartite graph with vertex set V (G) ∪ M and edge set
{(vj , i) : i ∈ Svj } = {(vj , i) : vj ∈ Li}. We will refer to this graph as the
bipartite random graph Bn,m,p assiciated to Gn,m,p.

In this work we consider the symmetric random intesection graph Gn,n,p in which
the number of labels m is equal to the number of vertices n. The conectivity
threshold in this case is τc

def
= ln n

n (see [20]). More specifically, when p ≥ lnn+g(n)
n

The Second Eigenvalue of Random Walks 239

for some g(n) that goes to ∞ arbitrarily slowly, the Gn,n,p is almost surely con-
nected. Here we will take p = 4 lnn

n , i.e. p four times the connectivity threshold.
A random walk on a graph G = (V (G), e(G)) is a Markov Chain with state

space V (G) and transition probability matrix given by

P (x, y) =
{ 1

dG(x) if (x, y) ∈ e(G)
0 otherwise

for all x, y ∈ V (G). Hence, we will say that a particle performs a random walk on
G if given that it occupies vertex x at some time step, it can equiprobably occupy
any of the neighbours of x at the next time step. The steady state distribution
for this chain is given by π(x) = dG(x)

2|e(G)| , for all x ∈ V (G). We here give an upper
bound on the second eigenvalue of P , when G is an instance of the symmetric
random intersection graph Gn,n,p, with p = 4τc, which is a metric that shows
how quickly the corresponding Markov Chain approaches (in terms of variation
distance) its steady state distribution.

3 Some Useful Properties of Gn,n,p

In this section we prove some properties of symmetric random intersection graphs
that will be used in the rest of the paper. The first Lemma concerns the cardi-
nalities of the sets Sv, Ll.

Lemma 1. The following hold with high probability in Gn,n,p when p = 4τc

(i) For every vertex v ∈ V (G) we have |Sv| ∈ (1 ±
√

4/5)4 ln n.
(ii) For every label l ∈ M we have |Ll| ∈ (1 ±

√
4/5)4 ln n.

(iii) There are no vertices x �= y ∈ V (G) that have more than 2 labels in common.

Proof. (i) By the definition of the model |Sv| follows Bin(n, p) and its mean
value is np = 4 lnn. Hence, using Boole’s inequality and Chernoff bounds we get

Pr(∃v ∈ V (G) : ||Sv| − np| ≥
√

4/5np) ≤ n exp
{

−16
15

ln n

}
= o(1).

(ii) follows in exactly the same way, since |Ll| follows Bin(n, p).
(iii) A crude inequality indeed gives

Pr(∃x �= y ∈ V (G) : |Sx ∩ Sy| ≥ 3) ≤
(

n

2

)(
m

3

)
p6 ≤ n5

(
4 lnn

n

)6

= o(1).

�

The following Lemma concerns the degrees of the vertices and the number of
edges in Gn,n,p.

240 S. Nikoletseas, C. Raptopoulos, and P.G. Spirakis

Lemma 2. The following hold with high probability in Gn,n,p when p = 4τc

(1) For every vertex x ∈ V (G) we have dG(x) = |Sx|Θ(ln n).
(2) The number of edges of Gn,n,p satisfies |e(G)| = Θ(ln n)

∑
y∈V (G) |Sy|

Proof. (1) By (iii) of Lemma 1 we have that whp any edge (x, y) ∈ e(G) is
generated by (at least 1 and) at most 2 labels. Hence, whp for any vertex x ∈
V (G), the formula

∑
l∈Sx

|Ll| is at most 2dG(x) (and at least dG(x)), since it
counts every edge adjacent to x at most twice (once for every label that generates
it). But (ii) of Lemma 1 implies that

∑
l∈Sy

|Ll| = |Sy|Θ(ln n), for all y ∈ V (G).
So we must have dG(x) = |Sx|Θ(ln n).

(2) This is obvious since |e(G)| = 1
2

∑
y∈V (G) dG(y). �

4 Bounds for the Second Eigenvalue and the Mixing
Time

In this section we give an upper bound on the second eigenvalue of the random
walk on an instance of Gn,n,p, with p = 4τc, that holds for almost every instance.

Let W̃ be a Markov Chain on state space V (i.e. the vertices of Gn,n,p) and
transition matrix given by

P̃ (x, y) =
{∑

l∈Sx∩Sy

1
|Sx|·|Ll| if Sx ∩ Sy �= ∅

0 otherwise.

Note that this Markov Chain comes from observing the simple random walk
on the Bn,n,p graph associated with Gn,n,p every two steps. This means that W̃
is reversible and we can easily verify that its stationary distribution is given by

π̃(x) =
|Sx|∑

y∈V |Sy|
, for every x ∈ V .

Now let W denote the random walk on Gn,n,p and let P denote its tran-
sition probability matrix. It is known that W is reversible and its stationary
distribution is given by π(x) = dG(x)

2|e(G)| , for every x ∈ V .

In order to compare the eigenvalues of W and W̃ we will use the following
theorem of Diaconis and Saloff-Coste (see [3])

Theorem 1 ([3]). Consider two reversible, irreducible markov chains on a finite
set V with transition matrices P, P̃ respectively, stationary distributions π, π̃
respectively and eigenvalues β0 = 1 > β1 ≥ β2 ≥ · · · ≥ β|V |−1 ≥ −1 and
β̃0 = 1 > β̃1 ≥ β̃2 ≥ · · · ≥ β̃|V |−1 ≥ −1 respectively.

For each pair x �= y with P̃ (x, y) > 0, fix a sequence of steps x0 = x, x1, x2, . . . ,
xk = y with P (xi, xi+1) > 0. This sequence of steps is called a path γxy of
length |γxy| = k. Let E = {(x, y) : P (x, y) > 0)}, Ẽ = {(x, y) : P̃ (x, y) > 0)} and

The Second Eigenvalue of Random Walks 241

Ẽ(z, w) = {(x, y) ∈ Ẽ : (z, w) ∈ γxy}, where (z, w) ∈ E. Then, for 1 ≤ i ≤ |V |−1,

βi ≤ 1 − δ

A
(1 − β̃i)

where δ is such that π̃(x) ≥ δπ(x), for all x ∈ V , and

A = max
(z,w)∈E

⎧⎨
⎩

1
π(x)P (x, y)

∑

Ẽ(z,w)

|γxy|π̃(x)P̃ (x, y)

⎫⎬
⎭ .

�

We now prove the following

Lemma 3. Consider the two Markov Chains W, W̃ with transition matrices P
and P̃ respectively. Let λ1 and λ̃1 be their second largest eigenvalues respectively.
Then whp there is a constant γ > 0 such that

λ1 ≤ 1 − γ(1 − λ̃1).

Proof. First note that, by Lemma 2, there is a constant δ > 0 such that, for all
x ∈ V (G),

π̃(x) =
|Sx|∑

y∈V |Sy| ≥ δ
dG(x)
2|e(G)| = δπ(x).

Notice now that by the definition of the two Markov Chains W and W̃ , and
by the definition of Gn,n,p, we have that P (x, y) > 0 iff P̃ (x, y) > 0. So, by
considering the set of paths γx,y = {x0 = x, x1 = y} for all (x, y) such that
P̃ (x, y) > 0, the quantity A of Theorem 1 becomes

A = max
(x,y):P (x,y)>0

{
π̃(x)P̃ (x, y)
π(x)P (x, y)

}
.

It remains then to bound A by a constant. By the corresponding formulae for
π(x), P (x, y), π̃(x) and P̃ (x, y) we have that for all (x, y) such that P (x, y) > 0

π̃(x)P̃ (x, y)
π(x)P (x, y)

=

|Sx|∑
y∈V |Sy| ·

∑
l∈Sx∩Sy

1
|Sx|·|Ll|

dG(x)
2|e(G)| · 1

dG(x)

=
2|e(G)|

∑
l∈Sx∩Sy

1
|Ll|∑

y∈V |Sy| .

But by (ii) and (iii) of Lemma 1 and by (2) of Lemma 2 this fraction is whp
Θ(1), which means that A is bounded by some constant.

Hence, by applying Theorem 1 and setting γ = δ
A , we get the desired result.

�

Because of Lemma 3, in order to give a bound on λ1, we will first bound λ̃1. To
do this, we will define a third Markov Chain: Let Ŵ denote the random walk
on the Bn,n,p bipartite graph that is associated to Gn,n,p. Let also P̂ denote

242 S. Nikoletseas, C. Raptopoulos, and P.G. Spirakis

its transition probability matrix and let λ̂i, i = 1, . . . , 2n, its eigenvalues and
x̂i, i = 1, . . . , n+n, their corresponding eigenvectors. Also, let π̂ be the stationary
distribution of Ŵ . Note that

P̂ 2 =
[
P̃ ∅
∅ Q

]

where Q is some transition matrix. But for any i = 1, . . . , n+n, we have P̂ 2x̂i =
λ̂2

i x̂i. In particular, this means that λ̃1 is at most λ̂2
1. So, in order to give an

upper bound on λ̃1, we need to give an upper bound on λ̂1 (that holds whp).In
order to do so, we use the notion of conductance ΦŴ of the walk Ŵ that is
defined as follows:

Definition 2. Consider the bipartite random graph Bn,n,p that is associated to
Gn,n,p. The vertex set of Bn,n,p is V (B) = V (G) ∪ M. For every x ∈ V (B),
let dB(x) be the degree of x in B. For any S ⊆ V (B), let eB(S : S) be the
set of neighbours of S with one end in S and the other in S = V (B)\S, let
dB(S) =

∑
v∈S dB(v) and π̂(S) =

∑
v∈S π̂(v). Then

ΦŴ = min
π̂(S)≤1/2

|eB(S : S)|
dB(S)

.

Before dealing with the conductance of Bn,n,p we need an auxiliary lemma.

Lemma 4. With high probability there is no S = V1 ∪ M1, with V1 ⊆ V (G),
M1 ⊆ M, |V1| ≥ (1 − 1/40)n and |M1| ≥ (1 − 1/40)n such that π̂(S) ≤ 1

2 .

Proof. Let V1 = V (G)\V1 and assume for contradiction that |V1| ≤ n/40. By
Lemma 1 we have that whp

π̂(V 1) =
∑

x∈V 1

|Sx|∑
y |Sy| ≤ n

40
1 +

√
4/5

n(1 −
√

4/5)
<

1
4
.

Since π̂(V 1) + π̂(V1) = 1
2 , this means that π̂(V1) > 1

4 .
Similarly, we can show that whp π̂(M1) > 1

4 . Hence, whp π̂(S) > 1
2 . �

We now prove the following

Lemma 5. With high probability, the conductance of the random walk on Bn,n,p

satisfies ΦŴ ≥ φ, where φ is some positive constant.

Proof. Let S = V1 ∪ M1, where V1 ⊆ V (G) and M1 ⊆ M. The cases |V1| = 0 or
|M1| = 0 are trivial so we do not consider them.

Notice now that, because of Lemma 1, the number of edges coming out of V1 is
whp |eB(V1 : M)| ∈ |V1|(1±

√
4/5)4 lnn. Similarly, the number of edges coming

out of M1 is whp |eB(M1 : V (G))| ∈ |M1|(1 ±
√

4/5)4 ln n. It is then obvious
that if (1 + 1/2)|eB(M1 : V (G))| ≤ |eB(V1 : M)| or |eB(V1 : M)| ≤ (1 − 1/2)|eB

(M1 : V (G))|, then we are done, since there will be at least a contant fraction

The Second Eigenvalue of Random Walks 243

of the number of edges spanned by S that “leave” S (which by the definition
of conductance implies the lower bound on ΦŴ). So we only have to deal with
the case (1 − 1/2)|eB(M1 : V (G))| ≤ |eB(V1 : M)| ≤ (1 + 1/2)|eB(M1 : V (G))|.
Given the relation of |eB(V1 : M)|, |eB(M1 : V (G))| with |V1|, |M1| respectively
(see above), we will consider the broader (whp) case 1

300 |M1| ≤ |V1| ≤ 300|M1|.
Note now that |eB(S : S)| follows Bin(|V1||M1|, p). By using Chernoff bounds

and Boole’s inequality we can show that, for any constant c1 > e300 we have

Pr

(
∃V1, M1 :

1
300

|M1| ≤ |V1| ≤ 300|M1|, |eB(S : S)|>
(

1 + c1
n

|M1|

)
p|V1||M1|

)

≤
n∑

j=1

∑
i:�j/300�≤i≤300j

(
n

j

)(
n

i

)
⎛
⎜⎜⎝

ec1
n
j

(
1 + c1

n
j

)(1+c1
n
j)

⎞
⎟⎟⎠

pij

≤
n∑

j=1

∑
i:�j/300�≤i≤300j

njni

⎛
⎜⎜⎝

ec1
n
j

(
1 + c1

n
j

)(1+c1
n
j)

⎞
⎟⎟⎠

pij

≤
n∑

j=1

∑
i:�j/300�≤i≤300j

exp
{

(j + i) ln n + c14i lnn − c14i lnn ln
(

1 + c1
n

j

)}
= o(1)(1)

Hence, whp there is no S = V1 ∪ M1 such that 1
300 |M1| ≤ |V1| ≤ 300|M1| and

the edges inside S surpass their mean value by more than c1
n

|M1| times.
We now consider two cases:

Case I: Assume that |M1| ≥ n
ln n . Then it is easy to see that eB(S : S) has

at least Ω(n2/ lnn) possible edges. Since |eB(S : S)| follows Bin(|V1|(n −
|M1|) + |M1|(n − |V1|), p), the mean number of edges in eB(S : S) is clearly
Ω(n). So, by using Chernoff bounds and Boole’s inequality we conclude that
the probability that there is some S = M1 ∪ V1 satisfying 1

300 |M1| ≤ |V1| ≤
300|M1|, |M1| ≥ n

ln n and |eB(S : S)| ≤ (1 − 1/2)E|eB(S : S)| is at most

n∑
j=n/ lnn

∑
i:j/300≤i≤300j

(
n

j

)(
n

i

)
e−Ω(n)

≤
n∑

j=n/ ln n

∑
i:j/300≤i≤300j

(
n

n/ lnn

)(
n
n

300 ln n

)
e−Ω(n)

≤
n∑

j=n/ ln n

∑
i:j/300≤i≤300j

(e lnn)
n

ln n (300e lnn)
n

300 ln n e−Ω(n) = o(1)(2)

where in the second inequality we used the fact that
(
n
x

)
is decreasing for

x ≥ n/2 and in the third inequality we used the fact
(
n
x

)
≤

(
ne
x

)x
for

244 S. Nikoletseas, C. Raptopoulos, and P.G. Spirakis

all x. Therefore, in this case, whp |eB(S : S)| ≥ 1
2E|eB(S : S)| = ln n

2n (|V1|(n−
|M1|) + |M1|(n − |V1|)). But Lemma 4 states that at least one of (n − |M1|)
or (n−|V1|) is equal or greater to n/40. So, for any constant c2 < 1

4·40·3002·c1
,

we have that

c2

(
1 + c1

n

|M1|

)
p|V1||M1| ≤ p

2
(|V1|(n − |M1|) + |M1|(n − |V1|)).

By (1) and (2) above, this means that whp, in the case |M1| ≥ n
ln n , there is

at least a contant fraction γ1 ≤ 1 of the number of edges spanned by S that
“leave” S (which by the definition of conductance implies the lower bound
on ΦŴ).

Case II: Assume that |M1| < n
ln n . As mentioned above, |e(S : S)| follows

Bin(|V1||M1|, p). It is then easy to see that the probability that there is
some S = M1 ∪ V1 satisfying 1

300 |M1| ≤ |V1| ≤ 300|M1|, |M1| < n
ln n and

|eB(S : S)| > 3002|M1| ln lnn is at most the probability that a set S′ of k
vertices, where 2 ≤ k ≤ 301n/ lnn, of a Bernoulli random graph G2n,p has
at least k ln lnn edges that have both edges in S′. The last probability is at
most

301n/ ln n∑
k=2

(
2n

k

)((
k
2

)
k ln lnn

)
pk ln ln n

≤
301n/ ln n∑

k=2

(
2ne

k

)k (
ke

2 ln lnn

)k ln ln n (
4 lnn

n

)k ln ln n

≤
301n/ ln n∑

k=2

ek(ln n−ln k)+k ln ln n(ln k−ln ln ln n+ln ln k−ln n)+7k ln ln n = o(1).

But Lemma 1 states that d(S) = Θ(|M1| ln n), which means that (whp), for
every S in this case, there is at least a constant fraction γ2 ≤ 1 of the edges
spanned by S that “leave” S (which by the definition of conductance implies
the lower bound on ΦŴ). This ends the proof of the lemma since we can
take φ = min{γ1, γ2}. �

By a result of [10,18], we know that λ̂1 ≤ 1 − Φ2
Ŵ

2 and so, by Lemma 5, λ̂1
is (upper) bounded away from 1. By the above discussion, we have proved the
following

Theorem 2. With high probability, the second largest eigenvalue of the random
walk on Gn,n,p, with p = 4τc, satisfies λ1 ≤ ζ, where ζ ∈ (0, 1) is a constant that
is bounded away from 1.

5 Conclusions and Future Work

In this work, we proved that whp there is a constant gap between the second
eigenvalue of the random walk on Gn,n,p, with p = 4τc, and 1. Our analysis can

The Second Eigenvalue of Random Walks 245

be pushed further (although not without many technical difficulties) to provide
tighter results (e.g. improve the multiplicative constant 4 on p). It is worth
investigating other important properties of Gn,m,p, such as dominating sets,
existence of vertex disjoint paths between pairs of vertices etc.

References

1. Alon, N., Spencer, J.: The Probabilistic Method, 2nd edn. John Wiley & Sons,
Inc., Chichester (2000)

2. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge
(2001)

3. Diaconis, P., Saloff-Coste, L.: Comparison Theorems for Reversible Markov Chains.
The Annals of Applied Probability 3(3), 696–730 (1993)

4. Dı́az, J., Penrose, M.D., Petit, J., Serna, M.: Approximating Layout Problems on
Random Geometric Graphs. Journal of Algorithms 39, 78–116 (2001)

5. Dı́az, J., Petit, J., Serna, M.: Random Geometric Problems on [0, 1]2. In: Rolim,
J.D.P., Serna, M.J., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 294–306.
Springer, Heidelberg (1998)

6. Dı́az, J., Petit, J., Serna, M.: A Random Graph Model for Optical Networks of Sen-
sors. In: The 1st International Workshop on Efficient and Experimental Algorithms
(WEA) (2003), also in the IEEE Transactions on Mobile Computing Journal 2(3)
186–196 (2003)

7. Efthymiou, C., Spirakis, P.: On the Existence of Hamilton Cycles in Random Inter-
section Graphs. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 690–701. Springer, Heidelberg (2005)

8. Fill, J.A., Sheinerman, E.R., Singer-Cohen, K.B.: Random Intersection Graphs
when m = ω(n): An Equivalence Theorem Relating the Evolution of the G(n, m, p)
and G(n, p) models, http://citeseer.nj.nec.com/fill98random.html

9. Godehardt, E., Jaworski, J.: Two models of Random Intersection Graphs for Classi-
fication. In: Opitz, O., Schwaiger, M. (eds.) Studies in Classification, Data Analysis
and Knowledge Organisation, pp. 67–82. Springer, Heidelberg (2002)

10. Jerrum, M., Sinclair, A.: Approximate Counting, Uniform Generation and Rapidly
Mixing Markov Chains. Information and Computation 82, 93–133 (1989)

11. Karoński, M., Scheinerman, E.R., Singer-Cohen, K.B.: On Random Intersection
Graphs: The Subgraph Problem. Combinatorics, Probability and Computing jour-
nal 8, 131–159 (1999)

12. Marczewski, E.: Sur deux propriétés des classes d’ ensembles. Fund. Math. 33,
303–307 (1945)

13. Nikoletseas, S., Palem, K., Spirakis, P., Yung, M.: Short Vertex Disjoint Paths and
Multiconnectivity in Random Graphs: Reliable Network Computing. In: Shamir,
E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 508–519. Springer, Hei-
delberg (1994), also in the Special Issue on Randomized Computing of the In-
ternational Journal of Foundations of Computer Science (IJFCS) 11(2), 247–262
(2000)

14. Nikoletseas, S., Raptopoulos, C., Spirakis, P.: The Existence and Efficient Con-
struction of Large Independent Sets in General Random Intersection Graphs. In:
Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 1029–1040. Springer, Heidelberg (2004), also in the Theoretical Com-
puter Science (TCS) Journal (to appear, 2007)

http://citeseer.nj.nec.com/fill98random.html

246 S. Nikoletseas, C. Raptopoulos, and P.G. Spirakis

15. Nikoletseas, S., Spirakis, P.: Expander Properties in Random Regular Graphs with
Edge Faults. In: Mayr, E.W., Puech, C. (eds.) STACS 95. LNCS, vol. 900, pp.
421–432. Springer, Heidelberg (1995)

16. Penrose, M.: Random Geometric Graphs. Oxford Studies in Probability (2003)
17. Raptopoulos, C., Spirakis, P.: Simple and Efficient Greedy Algorithms for Hamilton

Cycles in Random Intersection Graphs. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005.
LNCS, vol. 3827, pp. 493–504. Springer, Heidelberg (2005)

18. Sinclair, A.: Algorithms for Random Generation and Counting: a Markov Chain
Approach. PhD Thesis, University of Edimburg (1988)

19. Sinclair, A. (ed.): Algorithms for Random Generation and Counting. Birkhauser
(1992)

20. Singer-Cohen, K.B.: Random Intersection Graphs. PhD thesis, John Hopkins Uni-
versity (1995)

21. Stark, D.: The Vertex Degree Distribution of Random Intersection Graphs. Ran-
dom Structures & Algorithms 24(3), 249–258 (2004)

Verifying Security Protocols for Sensor Networks

Using Algebraic Specification Techniques

Iakovos Ouranos1 and Petros Stefaneas2

1 School of Electrical and Computer Engineering
iouranos@central.ntua.gr

2 School of Applied Mathematical and Physical Sciences
National Technical University of Athens

petros@math.ntua.gr

Abstract. Algebraic specification languages are formal methods that
provide a rigorous basis for modeling of several systems. Security pro-
tocols are safety critical systems that need to be verified before their
implementation. In this paper we have formally specified sensor network
encryption protocol (SNEP) and a key agreement protocol for sensor
networks, both from the SPINS protocol suite, with the OTS/CafeOBJ
method, a well known formal specification technique applied not only in
research, but also in industry. Based on this specification, we have proved
that each protocol possesses an important safety(invariant) property.

Keywords: Algebraic Specification and Verification, CafeOBJ, Sensor
Networks, Observational Transition Systems, SPINS Protocol suite.

1 Introduction

Formal Methods (FM) are techniques, languages and tools based on mathemat-
ics that provide a rigorous basis for specification and verification of software and
hardware systems[1]. Using them during the design process of a system may pre-
vent critical flaws that could lead to high cost. The OTS/CafeOBJ method [2][3]
is one of the most promising approaches to the system verification. Protocols or
systems are specified as observational transition systems, or OTSs, in CafeOBJ
[4], an executable algebraic specification language. Next, the properties we want
to verify, are expressed in CafeOBJ notation and the proof is done using induc-
tion and/or case analysis with the CafeOBJ system. This paper shows how the
above method can be used for specifying security protocols for sensor networks
and verifying properties of them. Since security in sensor networks is of major
importance, it is very interesting to show how such safety critical protocols are
verified using a rigorous algebraic technique. As a case study we have chosen
protocols from the SPINS suite [5], that have not been analyzed before using
such methods. The rest of the paper is organized as follows: section 2 gives some
basic notation of CafeOBJ and OTSs. Section 3 describes the protocols to be
modeled. Section 4 presents the algebraic specification of the protocols, while
section 5 the verification of one invariant property for each protocol. Section 6
concludes the paper.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 247–259, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

248 I. Ouranos and P. Stefaneas

2 CafeOBJ and Observational Transition Systems

2.1 CafeOBJ Basics

Initial and hidden algebra[6] are the logical basis of CafeOBJ [10]. The former
is used to specify abstract data types such as integers, and the latter to specify
objects. There are two kinds of sorts in CafeOBJ, visible sorts representing
abstract data types and hidden sorts representing the set of states of an object.
The operations to hidden sorts can be classified into actions and observations.
An action can change a state of an object. It takes a state of an object and zero or
more data, and returns another or the same state of the object. An observation
is used to observe the value of a data component in an object. It takes a state
of an object and zero or more data, and returns the value of a data component
in the object.

Action and observation operators are declared by starting with bop, and others
by starting with op. After bop or op, an operator name is written, followed by :
and a list of sorts, and then, → and a sort are written. Operators are defined
with equations. Equations are declared by starting with eq, and conditional ones
by starting with ceq. After eq, two terms connected with = are written, ended
with a full stop. After ceq, two terms connected with = are written, followed
by if, and then a term denoting the condition and a full stop. The CafeOBJ
system uses declared equations as left-to right rewrite rules and rewrites a given
term.

Basic units of CafeOBJ specifications are modules. The CafeOBJ system pro-
vides built-in modules such as BOOL, where propositional logic is specified, or
INT, where the set of integers together with their properties is specified. Below
we present the specification of a counter of integers as a behavioural object in
CafeOBJ.

mod* COUNTER {
pr(INT)
-- declaration of hidden sort
[Counter]
-- declaration of operators
op init : -> Counter -- initial state
bop add : Int Counter -> Counter -- action
bop read : Counter -> Int -- observation
-- declaration of variables
vars I I’ : Integer
var C : Counter
-- declaration of equations
eq read(init) = 0 .
eq read(add(I, C)) = I + read(C) .
}

The name of the module is COUNTER specified after the keyword mod* which is
an abbreviation of module*. The module* declares a module with loose

Verifying Security Protocols for Sensor Networks 249

semantics, while for the modules with initial semantics the mod! is used. The
visible sorts are declared within [] while for the hidden sorts the *[]* is used
and the ordering of them by <. So, in the above example we have one hidden sort
Counter. The lines beginning with the keyword - - are comments. Variables are
declared by the keyword var (vars for more than one variables). Modules can be
imported by using protecting, extending, or using. Protecting imports do not
collapse elements or add new elements to the models of the imported module
in contrast to the extending imports. Using imports provides no guaranty, so
they might even collapse elements. The data of the above specification is INT
which is a built-in module of the system. It is imported in the specification by
protecting(INT). The init operator denotes any initial state, while add action
adds an integer to the counter. Finally the read observation returns the value
of the counter.

2.2 Observational Transition Systems

We suppose that there exists a universal state space called Y and that each
data type used in OTSs is provided. A system is modeled by observing only
quantities that are relevant to the system and how to change the quantities by
state transition from the outside of each state of Y. An OTS can be used to
model a system in this way. An OTS S is 〈O, I, T 〉 such that:

– O : A finite set of observers. Each observer ox1:Do1 ,...,xm:Dom
: Y → Do is an

indexed function that has m indexes x1, ..., xm whose types are Do1, ..., Dom.
The equivalence relation (u1 =s u2) between two states u1, u2 ∈ Y is defined
as ∀ox1 , ..., xm : O.(ox1 , ..., xm(u1) = ox1 , ..., xm(u2)), where ∀ox1 , ..., xm : O
is the abbreviation of ∀ox1 , ..., xm : O.∀x1 : Do1...∀xm : Dom.

– I : The set of initial states such that I ⊆ Υ .
– T : A finite set of transitions. Each transition ty1:Dt1 ,...,yn:Dtn : Y → Y is an

indexed function that has n indexes y1, ..., yn whose types are Dt1, ..., Dtn

provided that ty1 , ...,yn (u1) =s ty1 , ...,yn (u2) for each [u] ∈ Y/ =s, each
u1, u2 ∈ [u] and each yk : Dtk for k = 1, ..., n. ty1 , ...,yn (u) is called the
successor state of u wrt S. Each transition ty1 , ...,yn has the condition c −
ty1:Dt1 ,...,yn:Dtn : Y → Bool, which is called the effective condition of the
transition. If c − ty1 , ...,yn (u) does not hold, then ty1 , ...,yn (u) =s u.

An OTS is described in CafeOBJ. Observers are denoted by CafeOBJ obser-
vation operations, and transitions by CafeOBJ action operations. Given an OTS
S, reachable states wrt S are inductively defined as follows:

– Each uinit ∈ I is reachable wrt S.
– For each ty1 , ...,yn ∈ T and each yk : Dtk for k = 1,...,n, tx1 , ...,xn(u) is

reachable wrt S if u ∈ Y is reachable wrt S.

Let Rs be the set of all reachable states wrt S.
Predicates whose types are Y → Bool are called state predicates. Any state

predicate p : Y → Bool is called invariant wrt S if p holds in all reachable states
wrt S, i.e. ∀u : RS .p(u). All properties considered in this paper are invariants.

250 I. Ouranos and P. Stefaneas

We prove that an OTS S has an invariant property p mainly by induction on
the number of transition rules applied (executed) as follows:

– Base case: For any state u ∈ Y in which each observation o ∈ O satisfies I,
we show that p(u) holds.

– Inductive step: Given any (reachable) state u ∈ Y wrt S such that p(u)
holds, we show that, for any transition t ∈ T , p(t(u)) also holds.

3 The SPINS Protocol Suite

3.1 General

SPINS protocols were designed to support the security requirements of sensor
networks. The limited computation resources of sensors, make it impossible to
use asymmetric cryptography. As a result, the designers of SPINS protocols use
purely symmetric cryptographic primitives. The security requirements of sensor
networks include:

– Data Confidentiality
– Data Authentication
– Data Integrity
– Data Freshness

To achieve these security requirements, two protocols were designed and im-
plemented: SNEP and μTESLA. SNEP provides data confidentiality, two-party
data authentication, integrity, and freshness. μTESLA provides authentication
for data broadcast. In addition, they built an authenticated routing application
using the μTESLA and a two-party key agreement protocol, based on SNEP.
In this paper we will analyze SNEP protocol and the two-party key agreement
protocol based on it.

3.2 Notation

Following the notation of [5],

– A,B are principals, such as communicating nodes
– NA is a nonce generated by A (to achieve freshness)
– M1 | M2 denotes the concatenation of messages M1 and M2
– KAB denotes the secret (symmetric) key which is shared between A and B
– {M}KAB is the encryption of message M with the symmetric key shared by

A and B
– {M}〈KAB,IV 〉 denotes the encryption of message M, with key KAB, and the

initialization vector IV which is used in encryption modes such as cipher-
block chaining (CBC), output feedback mode (OFB), or counter mode(CTR)

– MAC(KAB, M) denotes the message authentication code of message M,
encrypted with key KAB.

Verifying Security Protocols for Sensor Networks 251

3.3 The SNEP Protocol

The entire Sensor Network Encryption Protocol (Fig.1) works as follows: If a node
A wants to authenticate node B, it generates a nonce NA and sends it to B. On
receipt of the message, B obtains the nonce of A and sends its ID encrypted with
shared key Kencr, and the counter C which is the initialization vector, along with
the message authentication code encrypted with Kmac that contains the received
nonce, the counter value, and the encrypted ID. On receipt of the message, A de-
crypts it, obtains the ID of B, and verifies the MAC, which contains the nonce. If
the verification succeeds, then it is sure that B is really the sender of the message.
We denote that Kencr and Kmac are derived from the master secret key K through
a pseudo-random function.

Message 1. A → B : NA

Message 2. B → A : {B}〈Kencr ,C〉, MAC(Kmac, NA | C | {B}〈Kencr ,C〉)

Fig. 1. The SNEP Protocol

SNEP provides a number of nice properties, such as:

1. Semantic Security: A strong security property which prevents eavesdroppers
from inferring the message content from the encrypted message. The use of a
shared counter between the sender and the receiver, as an initialization vec-
tor, provides a cryptographic mechanism with no additional sending overhead
that achieves the property. The communicating parties share the counter and
increment it after each block, without sending it with each message. Since
the counter value is incremented after each message, the same message is en-
crypted differently each time.

2. Replay Protection: The counter value in the MAC prevents replaying old mes-
sages. If the counter were not present in the MAC, an adversary could easily
replay messages.

3. Strong Freshness : If the MAC verifies correctly, node A knows that node B
generated the response after it send the request.

4. Data Authentication: To achieve two-party authenticity and data integrity,
the protocol uses a Message Authentication Code (MAC). If the MAC verifies
correctly, the receiver can be assured that the message originated from the
claimed sender.

5. Low communication overhead : The counter state is kept at each point and does
not need to be sent in each message.

3.4 The Key Agreement Protocol

To bootstrap secure connections, a protocol for symmetric key setup is needed.
The protocol has been constructed solely from symmetric key algorithms. It uses
the base station as a trusted agent for key setup.

Assume that the node A wants to establish a shared secret session key SKAB

with node B. Since A and B do not share any secrets, they need to use a trusted

252 I. Ouranos and P. Stefaneas

third party S, which is the base station. In the trust setup, both A and B share
a secret key with the base station, KAS and KBS, respectively. Figure 2 depicts
the protocol that achieves secure key agreement as well as strong key freshness.

Message 1. A → B : NA,A
Message 2. B → S : NA,NB ,A,B, MAC(KBS , NA | NB | A | B)
Message 3. S → A : {SKAB}KAS , MAC(KAS , NA | B | {SKAB}KAS)
Message 4. S → B : {SKAB}KBS , MAC(KBS , NB | A | {SKAB}KAS)

Fig. 2. The key agreement protocol

The protocol uses the SNEP protocol with strong freshness. The nonces NA

snd NB ensure strong key freshness to both A and B. The SNEP protocol is
responsible to ensure confidentiality of the established session key SKAB, as
well as message authenticity to make sure that the key was really generated by
the base station. MAC in the second message helps defend the base station from
denial-of-service attacks (DoS), so the base station only sends two messages to
A and B if it received a legitimate request from one of the nodes.

4 Algebraic Specifications

4.1 SNEP Modeling

In the modeling of SNEP, we suppose that there exist untrustable nodes as well as
trustable ones. Trustable nodes exactly follow the protocol, but untrustable ones
may do something against the protocol as well, namely eavesdropping and/or
faking of messages. The combination and cooperation of untrustable nodes is
modeled as the most general intruder á la Dolev and Yao[7]. The intruder can
do the following:

– Eavesdrop any message flowing in the network.
– Glean any nonce, cipher and mac from the message; however the intruder

can decrypt a cipher or a mac only if he knows the corresponding key to
decrypt.

– Fake and send messages based on the gleaned information; however the in-
truder cannot guess unknown nonces.

The basic data types i.e. the visible sorts and the corresponding data con-
structors, used to model the protocol, are as follows:

– Node denotes nodes. Constant enemy denotes the intruder.
– Rand denotes random numbers, which makes nonces unguessable and unique.
– Nonce denotes nonces. Given nodes a,b and a random number r, n(a,b,r)

denotes a nonce created by a for b. Projections creator, forwhom and rand
return the first, second and third arguments.

– Key denotes symmetric keys. Given a node a, k(a) denotes the key of a’s
group and operator p returns the argument of k(a).

Verifying Security Protocols for Sensor Networks 253

– MacKey denotes the keys used for creation of MACs.
– Counter denotes counters that are used for encrypting as IVs.
– Cipher denotes ciphertexts used in the protocol. Given a symmetric key k,

a counter c and a node a, enc(k,c,a) denotes the ciphertext obtained by
encrypting a with k and c. Operators k, c and p return the first, second and
third arguments of enc(k,c,a).

– Mac denotes message authentication codes in protocol. Given a mac key k, a
nonce n, a counter c and a cipher ci, mac(k,n,c,ci) denotes the message
authentication code obtained by encrypting nonce, counter, and cipher with
the key k. Operators n,k,c and ci return the first, second, third and fourth
arguments of mac(k,n,c,ci).

In addition to those visible sorts, we use the visible sort Bool that denotes
truth values, declared in the built-in module BOOL.

The two operators to denote the two kinds of messages are declared as follows:

op m1: Node Node Node Nonce -> Msg
op m2: Node Node Node Cipher Mac -> Msg

The visible sort Msg denotes messages. Projections crt, src and dst return the
first (actual creator), second (sender) and third (receiver) arguments of each mes-
sage. The first argument is meta-information that is only available to the outside
observer and the principal that has sent the corresponding message, and that
cannot be forged by the intruder, while the remaining arguments may be forged
by the intruder. A predicate mi? checks if a given message is mi. The projection
n returns the fourth argument of the first message, while projections c and m
return the fourth and fifth argument of the second message correspondingly.

The network is modeled as a bag(multiset) of messages, which is used as
the storage that the intruder can use. Any message that has been sent or put
once into the network is supposed to be never deleted from the network. As a
consequence the emptiness of the network means that no messages have been
sent.

The enemy node tries to glean three kinds of quantities from the network.
These are the nonces, the ciphers and the message authentication codes. The
collections of those quantities gleaned by the enemy node are denoted my the
operators:

op nonces : Network -> ColNonces
op ciphers : Network -> ColCiphers
op macs : Network -> ColMacs

The visible sort Network denotes networks and the visible sorts ColNonces,
ColCiphers and ColMacs denotes collections of Nonces, Ciphers and Macs cor-
respondingly.

For the case of ColMacs, the definition is:

254 I. Ouranos and P. Stefaneas

eq MC \in macs(void) = false .
ceq MC \in macs(M,NW) = true if m2?(M) and MC = m(M) .
ceq MC \in macs(M,NW) = MC \in macs(NW)

if not(m2?(M) and MC = m(M)) .

The constant void denotes the empty bag and the operator _,_ denotes the data
constructor of nonempty bags. Operator _\in_ is the membership predicate of
bags. The equations say that no macs appearing in the second message are
available if the network is empty, and the enemy node can glean such a mac MC
from the network iff there exists a message m2 in the network which includes
MC.

The OTS describing the protocol contains two observations and six kinds of
transition rules:

bop nw : Snep -> Network -- network
bop ur : Snep -> URands -- used random numbers (Rands)
-- actions

-- send message m1
bop sdm1 : Snep Node Node Rand -> Snep
-- send message m2
bop sdm2 : Snep Node Msg -> Snep
-- send fake m1
bop fkm11 : Snep Node Node Rand -> Snep
-- send fake m1
bop fkm12 : Snep Node Node Nonce -> Snep
-- send fake m2
bop fkm21 : Snep Node Node Cipher Mac -> Snep
-- send fake m2
bop fkm22 : Snep Node Node Rand -> Snep

The hidden sort Snep denotes the state space. Observation ur is the set of
used random numbers and the observation nw denotes the network. The sdm1
and sdm2 formalize sending messages according to the protocol, fkm11, fkm12,
sending faking messages of first kind and fkm21, fkm22 sending faking messages
of second kind. The equations to define fkm21 are:

op c-fkm21 : Snep Node Node Cipher Mac -> Bool
eq c-fkm21(S, P1, P2, CI, M) = (CI \in ciphers(nw(S)) and

M \in macs(nw(S))) .
ceq nw(fkm21(S, P1, P2, CI, M)) = (m2(enemy, P1, P2, CI, M),nw(S))

if c-fkm21(S, P1, P2, CI, M) .
eq ur(fkm21(S, P1, P2, CI, M)) = ur(S) .
ceq fkm21(S, P1, P2, CI, M) = S if not c-fkm21(S,P1,P2,CI,M) .

The operator c-fkm21 is the effective condition of any transition rule denoted
by fkm21.c-fkm21(s,p1,p2,ci,mc) means that in a state s, there exists a cipher
ci and a mac mc in the network. In that state, an enemy node can use them and
send a fake message m2.

Verifying Security Protocols for Sensor Networks 255

4.2 Key Agreement Protocol Modeling

The key agreement protocol is modeled similarly. We distinguish two types of
protocol agents, the nodes and the base station (visible sorts Node and Base). A
malicious base station is denoted by the constant ibase. In addition:

– Sort Nkey denotes the key shared by two nodes. Given nodes n1 and n2
k(n1,n2) is the key shared by n1 and n2.

– Sort Bnkey denotes the key shared by a node and a base station. Given node
n and base station bs, k(n,bs) denotes the key shared by n and bs.

– Sort Cipher denotes ciphers of the protocol. The encryption of the shared
key of two nodes Nkey with a Bnkey form the ciphertext, i.e. enc(bk,nk),
with bk of the sort Bnkey and nk of the sort Nkey.

– Sort Mac1 denotes MACs of the second message while Mac2 denotes MACs
of the third and fourth message.

Messages of the protocol are declared as visible sorts:

op m1 : Node Node Node Nonce -> Msg
op m2 : Node Node Base Nonce Nonce Mac1 -> Msg
op m3 : Base Base Node Cipher Mac2 -> Msg
op m4 : Base Base Node Cipher Mac2 -> Msg

The enemy node can glean four kinds of quantities from the network. Nonces,
Ciphers and two kinds of message authentication codes. The OTS that models
the protocol contains two observations, four transition rules that formalize send-
ing messages according to the protocol and twelve transition rules corresponding
to the fake messages. Hidden sort Protocol models the state space.

-- reliable nodes
bop sdm1 : Protocol Node Node Rand -> Protocol
bop sdm2 : Protocol Node Base Rand Msg -> Protocol
bop sdm3 : Protocol Base Msg Msg -> Protocol
bop sdm4 : Protocol Base Msg Msg -> Protocol
-- enemy nodes and base station
bop fkm11 : Protocol Node Node Rand -> Protocol
bop fkm12 : Protocol Node Node Nonce -> Protocol
bop fkm21 : Protocol Node Base Nonce Nonce Mac1 -> Protocol
bop fkm22 : Protocol Node Node Base Rand Rand -> Protocol
bop fkm23 : Protocol Node Node Base Nonce Rand -> Protocol
bop fkm24 : Protocol Node Node Base Nonce Rand -> Protocol
bop fkm31 : Protocol Base Node Cipher Mac2 -> Protocol
bop fkm32 : Protocol Base Node Node Rand -> Protocol
bop fkm33 : Protocol Base Node Node Nonce -> Protocol
bop fkm41 : Protocol Base Node Cipher Mac2 -> Protocol
bop fkm42 : Protocol Base Node Node Rand -> Protocol
bop fkm43 : Protocol Base Node Node Nonce -> Protocol

256 I. Ouranos and P. Stefaneas

The equations to define sdm4 are as follows:

op c-sdm4 : Protocol Base Msg Msg -> Bool
eq c-sdm4(S,B,M1,M2) = (M1 \in nw(S) and m1?(M1) and

M2 \in nw(S) and m2?(M2) and B = dst-m2(M2)) .
ceq nw(sdm4(S, B, M1, M2)) = m4(B,B,src-m1m2(M2),enc(k(src-m1m2(M2),B),

k(src-m1m2(M1), dst-m1m3m4(M1))),
mac2(k(src-m1m2(M2), B),n(M2),src-m1m2(M1),
enc(k(src-m1m2(M2),B), k(src-m1m2(M1),
dst-m1m3m4(M1))))),nw(S) if c-sdm4(S,B,M1,M2) .

ceq ur(sdm4(S,B,M1,M2)) = ur(S) if c-sdm4(S,B,M1,M2) .
ceq sdm4(S,B,M1,M2) = S if not c-sdm4(S,B,M1,M2) .

c-sdm4(s,b,m,m’) means that in a state s, there exists a message m of the
kind m1 in the network, and a message m’ of the kind m2 that is addressed to
b. If this condition holds, the message m4(...) is put into the network.

5 Verification of Invariant Properties

Based on the specifications presented above, we have verified that each protocol
possesses one safety(invariant) property. The property we verified for SNEP is
called authentication property while the property we verified for key agreement
protocol is called the key agreement property. Informally, they are:
Authentication Property. Whenever node A receives a valid m2 message from
node B, B is always the claimed node (i.e. not an enemy).
Key Agreement Property. Whenever node A(B) receives from base station a
valid message m3(m4), then it is always true that the session key contained in
the message is valid (i.e. is not the enemy’s key).

5.1 Proof Scores of Authentication Property

The property is expressed as an invariant: At any reachable state s, sensor nodes
n1,n2,n3, key k, mac key k’, nonce n and counter c,

invariant((not(k = k(enemy)) and not(k’ = kmac(enemy)) and not(c = c(enemy))
and not(creator(n) = enemy) and (m2(p1,p2,p3,enc(k,c,p2),mac(k’, n, c, enc(k,
c, p2))) \in nw(s))) implies not(p2 = enemy)) .

To prove the property we follow the induction method as explained above. In
the module INV the invariant is declared, while in module ISTEP is declared the
induction step as follows:

op istep1 : Node Node Node Key MacKey Nonce Counter -> Bool
eq istep1(P1,P2,P3,K,K’,N,C) =

inv1(s,P1,P2,P3,K,K’,N,C) implies inv1(s’,P1,P2,P3,K,K’,N,C).

where s’ is the successor state. Next, we prove that after applying every different
transition the claim is preserved. This step requires case split. For the fourth
inductive case (transition rule fkm22) figure 3 presents the proof plan.

Verifying Security Protocols for Sensor Networks 257

Fig. 3. The proof plan for the fourth transition

In the figure, edges mean case splits, ovals represent intermediate nodes, which
mean case splitting in progress, and rectangles represent leaves, i.e. results of case
splitting. For each rectangle, a fragment of a proof score is written. m2 and m2’ cor-
respond to (m2(p1,p2,p3,enc(k,c,p2),mac(k’,n,c,enc(k,c,p2))) and
m2(enemy,q1,q2,enc(k(q1),c(q1),q1),mac(kmac(q1),n(q1,q2,r1),c(q1),
enc(k(q1),c(q1),q1)))) in the proof passage. The CafeOBJ system returned
true for all subcases, which means that the proof is successful.

5.2 Proof Scores of Key Agreement Property

The property is expressed as an invariant as follows: At any reachable state s,
base stations b1,b2, sensor nodes n1,n2, Bnkey bk, Nkey nk, random number r
invariant(not(n(bk) = enemy)) and (not(b(bk) = ibase)) and (m3(b1,b2,n1,
enc(bk,nk),mac2(bk,n(n1,r),n2, enc(bk,nk)))\innw(S)) impliesnot(b2=ibase)

To prove the property, we follow the same methodology as above. An inter-
esting proof passage that refers to the transition fkm31(s,bs1,q1,c1,mc2) is:

open ISTEP
-- arbitrary objects

ops q1 q2 : -> Node .
op mc2 : -> Mac2 .
op c1 : -> Cipher .
op bs1 : -> Base .
-- assumptions
-- eq c-fkm31(s,bs1,q1,c1,mc2) = true .
eq (enc(bk,nk) \in ciphers(nw(s))) = true .
eq (mac2(bk,n(n1,r),n2,enc(bk,nk)) \in macs2(nw(s))) = true .
-- subcase m3 = m3’
-- eq (m3(b1,b2,n1,enc(bk,nk),mac2(bk,n(n1,r),n2,enc(bk,nk))) =
-- (m3(ibase,bs1,q1,c1,mc2))) = true .
eq b1 = ibase .
eq b2 = bs1 .
eq n1 = q1 .
eq c1 = enc(bk,nk) .

258 I. Ouranos and P. Stefaneas

eq mc2 = mac2(bk,n(n1,r),n2,enc(bk,nk)) .
-- sub-subcases
eq not(n(bk) = enemy) = true .
eq not(b(bk) = ibase) = true .
eq bs1 = ibase .
-- successor state
eq s’ = fkm31(s,bs1,q1,c1,mc2) .
-- check
red istep1(b1,b2,n1,n2,bk,nk,r) .
close

The proof passage refers to the subcase where c-fkm31(s,bs1,q1,c1,mc2) = true∧
m3 = m3’

∧
not(n(bk) = enemy)

∧
not(b(bk) = ibase)

∧
bs1 = ibase.

6 Conclusion

We have applied the OTS/CafeOBJ technique for the modeling of security proto-
cols for sensor networks. We have also verified that the protocols possess one im-
portant invariant property. Researchers from the OBJ community have applied
the method successfully in numerous systems specification and verification. Au-
thentication protocols [8], real time systems[9], mutual exclusion algorithms[11],
railroad signaling systems [12], digital rights management systems[13] and mo-
bile systems [14][15] are a subset of CafeOBJ applications.

References

1. Bjørner, D.: Logics of Formal Specification Languages - The Possible Worlds cum
Domain Problem. In: Proceedings of 4th Panhellenic Symposium on Logic (2003)

2. Ogata, K., Futatsugi, K.: Proof Scores in the OTS/CafeOBJ Method. In: Najm, E.,
Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 170–184.
Springer, Heidelberg (2003)

3. Ogata, K., Futatsugi, K.: Some Tips on Writing Proof Scores in the OTS/CafeOBJ
Method. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning,
and Computation. LNCS, vol. 4060, pp. 596–615. Springer, Heidelberg (2006)

4. Diaconescu, R., Futatsugi, K.: CafeOBJ Report. World Scientific, Singapore (1998)
5. Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, J.D.: SPINS: Security Proto-

cols for Sensor Networks. In: Proceedings of MOBICOM 2001, pp. 189–199 (2001)
6. Goguen, J., Malcolm, G.: A hidden agenda. Technical Report CS97-538, University

of California at San Diego (1997)
7. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inform.

Theory IT-29, 198–208 (1983)
8. Ogata, K., Futatsugi, K.: Rewriting - based verification of authentication protocols.

In: WRLA ’02. ENTCS, vol. 71 (2002)
9. Ogata, K., Futatsugi, K.: Modeling and Verification of Real-Time Systems Based

on Equations. Science of computer programming 66(2), 162–180 (2007)
10. Diaconescu, R., Futatsugi, K., Ogata, K.: CafeOBJ: Logical Foundations and

Methodologies. Computing and Informatics 22, 1001–1025 (2003)

Verifying Security Protocols for Sensor Networks 259

11. Ogata, K., Futatsugi, K.: Formal analysis of Suzuki and Kasami distributed mutual
exclusion algorithm. In: FMOODS ’02, pp. 181–195 (2002)

12. Seino, T., Ogata, K., Futatsugi, K.: Specification and Verification of a Single-Track
Railroad Signaling in CafeOBJ. IEICE Trans. Fundamentals E84-A(6), 1471–1478
(2001)

13. Xiang, J., Kong, W., Futatsugi, K., Ogata, K.: Analysis of Positive Incentives for
Protecting Secrets in Digital Rights Management. In: WEBIST ’06 (2006)

14. Ouranos, I. Stefaneas, P., Frangos, P.: A Formal Specification Framework for ad
hoc mobile communication networks. In: van Leeuwen, J., Italiano, G.F., van der
Hoek, W., Meinel, C., Sack, H., Plášil, F., Bielikova, M. (eds.) SOFSEM 2007, vol.
2, pp. 91–102, Institute of Computer Science AS CR, Prague (2007)

15. Ouranos, I., Stefaneas, P., Frangos, P.: An Algebraic Framework for Modeling of
Mobile Systems. IEICE Trans. Fundamentals E90-A(9) (to appear, 2007)

Nonassociativity à la Kleene

Jean-Marcel Pallo

Universit de Bourgogne, LE2I UMR 5158, BP 47870, 21078 DIJON-Cedex, France
pallo@u-bourgogne.fr

Abstract. First we recall the work of Suschkewitsch (1929) about the
generalization of the associative law which is the starting point of the
theory of quasigroups. Then we show that it is a particular case of the
notion of relative associativity introduced by Roubaud in 1965. There-
after we prove a coherence theorem over an infinite set of nonassociative
operations. This result contains all the uppermentioned contributions.
This allows to obtain a very general à-la-Kleene theorem on rational
series which uses concatenations that can be associative or not.

1 Introduction

This paper is devoted to nonassociativity in formal language theory. More pre-
cisely, we establish a à-la-Kleene theorem. This result concerns rational series
using concatenations that may be either associative or nonassociative.

There is a huge amount of literature about associative binary systems (monoids,
semigroups...). On the contrary, very few contributions deal with nonassocia-
tive algebras except, obviously, Lie algebas. See for example the book’s chapter
“Nonassociative Structures” in [12] and the special issue on nonassociative alge-
bras in [15]. However, the subject of several old papers is precisely the withdrawal
of the associative axiom. There are at least two reasons for this droping out. First,
the purpose of mathematical generalization (quasigroups, loops...[11,14,19]). It
is the case in the paper of Suschkewitsch [33], the main idea of which is restated
here in. Second, practical reasons specific to the domain of application (genetics,
data analysis, quantum mechanics... [3,16]). In the area of linguistics, see for
instance the paper of Roubaud [29] and the book of Harris [10, page 157]: in the
word-sequence of a sentence, concatenation is semantically nonassociative.

The formal language theory has been developed mainly over free monoids
generated by alphabets, namely over sets with an associative concatenation.
Its natural achievement is the classical theory of formal power series on words
[5,13,32]. A way to grasp nonassociativity lies in considering trees instead of
words. This has sparked a large number of papers on tree grammars and tree
languages [7]. Formal power series on trees appear as a generalization of the
classical theory of formal power series on words [6]. Otherwise, linear languages
in their full generality, defined with a nonassociative concatenation, have been
introduced in [9], using notations of λ-calculus and functional programming.

Another approach has been introduced by Roubaud in 1965 [27,28,29]. If f is
an associative operation, one can swap parentheses f(x, f(y, z)) = f(f(x, y), z).

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 260–274, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Nonassociativity à la Kleene 261

In a set of nonassociative operations, it is possible to swap parentheses provided
that we also swap the operations f(x, g(y, z)) = h(k(x, y), z). This equation has
been studied in the framework of homogeneous groupods in [30] and as a func-
tional equation in [1, page 311]. Starting from certain arbitrary word, the swap
of parentheses needed to get them on the left side of the word can be achieved
in several ways. It is therefore natural to require that the result be always the
same. We obtain coherence conditions. In the context of category theory, the
term “coherence conditions” refers to a set of diagrams whose commutativity
implies the commutativity of a larger class of diagrams [17,18]. It is the case in
this paper since we show that pentagone coherence implies coherence for wider
diagrams. For this purpose we define an associative relative magma. Generalizing
some results of [22,25], we prove that this magma verifies the above coherence
conditions. Surprisingly, the generalization of Suschkewitsch is just a particular
case of this magma! Rational series defined on this magma can be characterized
à-la-Kleene in their full generality.

2 Suschkewitsch Generalization of the Associative Law

In [33], Anton Suschkewitsch observes that the proof of Lagrange theorem does
not make any use of the associative law. This law can be replaced by his more
general postulates, A and B namely. His nonassociative binary systems, such
so-called “general groups”, seem to be the predecessors of modern quasigroups.
See [26] for an interesting historical point of view.

Postulate A of [33] can be writen as: in the equation (X � A) � B = X � C the
element C depends upon the elements A and B only and not upon X .

Suschkewitsch also considers a special case of Postulate A which is however
more general than the associative law. He states its Postulate B as: in the equa-
tion X � (A � B) = (X � A) � B̄ the elements B and B̄ depend only upon each
other. Every B is completely defined by the corresponding B̄ and conversely.
The corresponding rewriting system has been studied in [8].

Let us recall a result of [33] that will be pointed out in the sequel. In Postulate
A, let us denote C by A ◦ B, i.e. (X � A) � B = X � (A ◦ B). Let us prove that ◦
is an associative operation. Using this Postulate, we can write:

((X � A) � B) � C = (X � (A ◦ B)) � C = X � ((A ◦ B) ◦ C) and
((X � A) � B) � C = (X � A) � (B ◦ C) = X � (A ◦ (B ◦ C)). Therefore we obtain:
(A ◦ B) ◦ C = A ◦ (B ◦ C), i.e. ◦ is associative.

The law (x ∗ y) ∗ z = x ∗ (y ◦ z) as a functional equation has been examined
in [1, pages 253 and 315] and [2].

3 Roubaud Relative Associativity

Given a set Δ = {α, β, γ, . . .} of binary operations and g, d : Δ×Δ → Δ, Jacques
Roubaud introduces in [29] an axiom of relative associativity:

262 J.-M. Pallo

α(x, β(y, z)) = g(α, β)(d(α, β)(x, y), z) which verifies the following conditions
for all α, β, γ ∈ Δ:

⎧⎨
⎩

g(α, g(β, γ)) = g(g(α, β), γ)
g(d(α, g(β, γ)), d(β, γ)) = d(g(α, β), γ)

d(d(α, g(β, γ)), d(β, γ)) = d(α, β)

Indeed, moving parentheses in α(x, β(y, γ(z, t))) at the left side can be ob-
tained in the two following ways:

α(x, β(y, γ(z, t))) = g(α, β)(d(α, β)(x, y), γ(z, t)) =
g(g(α, β), γ)(d(g(α, β), γ)(d(α, β)(x, y), z), t)
and
α(x, β(y, γ(z, t))) = α(x, g(β, γ)(d(β, γ)(y, z), t)) =
g(α, g(β, γ))(d(α, g(β, γ))(x, d(β, γ)(y, z)), t) =
g(α, g(β, γ))(g(d(α, g(β, γ)), d(β, γ))(d(d(α, g(β, γ)), d(β, γ)), d(β, γ))(x, y), z), t)

A convenient coherence condition should impose that these two results are
equal. Thus g is associative.

For example, g(α, β) = β and d(α, β) = α verify the above conditions. The
law α(x, β(y, z)) = β(α(x, y), z) as a relation on homogeneous groupods has been
studied in [31].

If (Δ, +) is a monoid, g(μ, ν) = μ + ν and d(μ, ν) = μ verify also these
conditions. Note that exhausting all possible operations g and d is an open
problem.

4 Notation and Definitions

Let V = {a, b, c, d . . .} be an alphabet, i.e. a finite nonempty set of letters and
V � the free monoid generated by V . Let F = {fα

p , α ∈ Ω, p ∈ Z} a set of binary
operations with index p in the set of relative integers and exponent α in a finite
or infinite set of greek letters Ω = {α, β, γ, μ, ν, . . .}.

We denote M = M(F , V �) the free magma over V � equipped with the binary
operations of F , i.e. the smallest subset of the free monoid (F

⋃
V)� generated

by the disjoint union of F and V , which contains V � and satisfies the inductive
rule: if P, Q ∈ M and fα

p ∈ F then fα
p (P, Q) ∈ M. Elements of M are called

generalized words (g-words in short).
Given w ∈ M, we denote by |w| the length of w, i.e. the number of letters of

V in w, each letter is counted as many times it occurs. Let us denote Mn the set
of g-words such that |w| = n. For example fα

2 (a, fβ
1 (fβ

3 (b, a), fα
0 (c, b))) ∈ M5.

Given w ∈ M, we denote by sk(w) the skeleton of w, i.e. the word obtained in
deleting the operations of F as well as the variable separators (commas). For ex-
ample, if w = fμ

5 (fν
0 (a, b), fγ

−2(b, f
α
−1(f

η
2 (c, a), d))) then sk(w) = ((ab)(b((ca)d))).

We call left g-word a g-word in which all operations of F occur at the left side
of the g-word followed by the letters of V . For example

fν
2 (fμ

−1(f
α
0 (fα

3 (f ζ
−4(a, b), c), b), a), c) is a left g-word.

Nonassociativity à la Kleene 263

Definition 1. The relative associative magma R = R(M) is the magma M
equipped with the relation (RAS): for all α, β ∈ Ω, p, q ∈ Z, P, Q, R ∈ R we have

fα
p (P, fβ

q (Q, R)) = fβ
p+q(f

α
p (P, Q), R).

The relation above is the combination of both solutions of the coherence con-
ditions appearing at the end of the previous Section. However, for the sake of
simplicity in exposition, we prefer to consider as a model the standard case of
integers with their addition rather than considering the general monoidal setting.

Let us notice that operations of F indexed by 0 are associative since from
(RAS) we deduce fα

0 (P, fα
0 (Q, R)) = fα

0 (fα
0 (P, Q), R).

If p �= 0, the operations fα
p are nonassociative since

fα
p (P, fα

p (Q, R)) = fα
2p(f

α
p (P, Q), R) and fα

p (fα
p (P, Q), R) = fα

p (P, fα
0 (Q, R)).

The last equality is a generalization of Postulate A of Suschkewitsch [33],
namely (X � A) � B = X � (A ◦ B) where ◦ is associative!

Now let us consider Postulate B of Suschkewitsch [33] writen as: fα
1 (X,

fα
1 (A, B)) = fα

1 (fα
1 (X, A), B̄). From (RAS) we obtain fα

1 (fα
1 (X, A), B̄) =

fα
1 (X, fα

0 (A, B̄)) and therefore fα
1 (A, B) = fα

0 (A, B̄). We can easily prove that:

fα
p (A, B) = fα

0 (A,
−
B

p

) and fα
0 (P, fα

0 (
−
Q

p

,
−
R

p+q

) = fα
0 (fα

0 (P,
−
Q

p

),
−
R

p+q

).

Definition 2. Let us denote λ the right unit in R, i.e. for all P ∈ R, α ∈ Ω,
p ∈ Z we have fα

p (P, λ) = P .

5 Coherence Results

Definition 3. Let us define the relation → on M as the smallest preorder-
ing, left and right invariant with respect to F , i.e. if P → Q then fα

p (P, R) →
fα

p (Q, R) and fα
p (R, P) → fα

p (R, Q) for all R ∈ M, α ∈ Ω, p ∈ Z, and satisfying
for all P, Q, R ∈ M, α, β ∈ Ω, p, q ∈ Z:

fα
p (P, fβ

q (Q, R)) → fβ
p+q(f

α
p (P, Q), R).

Lemma 1. We have fα
p (A, B) → fβ

q (C, D) iff either (1)
⎧⎪⎪⎨
⎪⎪⎩

A → C
B → D
α = β
p = q

or there exists S ∈ M with |S| ≥ 1 such that (2)
{

B → fβ
q−p(S, D)

fα
p (A, S) → C

.

Proof. The conditions are obviously sufficient since
fα

p (A, B) → fα
p (A, fβ

q−p(S, D)) → fβ
q (fα

p (A, S), D) → fβ
q (C, D).

264 J.-M. Pallo

For proving the necessity, let us consider the relation ≺ on M defined by
fα

p (A, B) ≺ fβ
q (C, D) iff conditions either (1) or (2) are verified.

≺ is reflexive and invariant with respect to F . Let us prove the transitiv-
ity of ≺, i.e. if fα

p (A, B) ≺ fβ
q (C, D) and fβ

q (C, D) ≺ fγ
r (E, F) then we have

fα
p (A, B) ≺ fγ

r (E, F). Among the four cases to study, we only detail the follow-
ing one. If there exist S and S

′
such that

{
B → fβ

q−p(S, D)
fα

p (A, S) → C

and {
D → fγ

r−q(S
′
, F)

fβ
q (C, S

′
) → E

then there exists S
′′

such that
{

B → fγ
r−p(S

′′
, F)

fα
p (A, S

′′
) → E

.

Indeed S
′′

= fβ
q−p(S, S′) verifies:

B → fβ
q−p(S, D) → fβ

q−p(S, fγ
r−q(S

′
, F)) → fγ

r−p(f
β
q−p(S, S

′
), F) = fγ

r−p(S
′′, F)

and fα
p (A, S

′′
) = fα

p (A, fβ
q−p(S, S′)) → fβ

q (fα
p (A, S), S′) → fβ

q (C, S′) → E. 	

Definition 4. Given w ∈ Mn, let us call associahedron ASn(w) the diagram
which is obtained from w by applying all possible → and −1→ relations.

See for example the pentagone AS4(fα
p (x, fβ

q (y, fγ
r (z, t)))) in Figure 1.

Theorem 1. Given w ∈ Mn, the associahedron ASn(w) is coherent, i.e. there
are no w

′
, w

′′ ∈ Mn such that w
′ �= w

′′
and sk(w

′
) = sk(w

′′
).

Proof. If x, y, z, t, u, v ∈ V , then AS4(fα
p (x, fβ

q (y, fγ
r (z, t)))) is coherent: see

Figure 1. See also the 14 elements of AS5(fα
p (x, fβ

q (y, fγ
r (z, f δ

s (u, v)))) below
and on Figure 2.

fα
p (x, fβ

q (y, fγ
r (z, f δ

s (u, v)))) fα
p (x, fβ

q (y, f δ
r+s(fγ

r (z, u), v)))
fβ

p+q(f
α
p (x, y), f δ

r+s(f
γ
r (z, u), v)) f δ

p+q+r+s(f
β
p+q(f

α
p (x, y), fγ

r (z, u)), v)
fα

p (x, fγ
q+r(f

β
q (y, z), f δ

s (u, v))) fα
p (x, f δ

q+r+s(f
β
q (y, fγ

r (z, u)), v))
f δ

p+q+r+s(fα
p (x, fβ

q (y, fγ
r (z, u)))) fβ

p+q(fα
p (x, y), fγ

r (z, f δ
s (u, v)))

fα
p (x, f δ

q+r+s(f
γ
q+r(f

β
q (y, z), u), v)) fγ

p+q+r(f
α
p (x, fβ

q (y, z)), f δ
s (u, v))

fγ
p+q+r(f

β
p+q(f

α
p (x, y), z), f δ

s (u, v)) f δ
p+q+r+s(f

α
p (x, fγ

q+r(f
β
q (y, z), u)), v)

f δ
p+q+r+s(f

γ
p+q+r(f

α
p (x, fβ

q (y, z)), u), v) f δ
p+q+r+s(f

γ
p+q+r(f

β
p+q(f

α
p (x, y), z), u), v)

By induction on n, suppose that for n ≥ 6 and for some v ∈ Mn we have

in ASn(v): w = fα
p (A, B) → w

′
= fβ

′

q′ (C
′
, D

′
) and w = fα

p (A, B) → w
′′

=

fβ
′′

q′′ (C
′′
, D

′′
), with |w| = |w′ | = |w′′ | = n, w

′ �= w
′′

and sk(w
′
) = sk(w

′′
). Then

we obtain sk(C
′
) = sk(C

′′
) and sk(D

′
) = sk(D

′′
). We apply Lemma 1.

Nonassociativity à la Kleene 265

Fig. 1. The pentagon AS4

If A → C
′
, B → D

′
, α = β

′
, p = q

′
and if A → C

′′
, B → D

′′
, α = β

′′
, p = q

′′
,

then we have |A| ≤ n − 1, |B| ≤ n − 1 and by the inductive hypothesis C
′
= C

′′

and D
′

= D
′′

since sk(C
′
) = sk(C

′′
) and sk(D

′
) = sk(D

′′
). A contradiction

follows.
If A → C

′
, B → D

′
, α = β

′
, p = q

′
, then a g-word S

′′
verifying B →

fβ
′′

q′′−p
(S

′′
, D

′′
) and fα

p (A, C
′′
) → C

′′
cannot exist. Indeed sk(D

′
) = sk(D

′′
)

should imply |S′′ | = |B| − |D′′ | = 0.

Now let us assume that there exist S
′

and S
′′

such that B → fβ
′

q′−p
(S

′
, D

′
),

fα
p (A, S

′
) → C

′
, B → fβ

′′

q′′−p
(S

′′
, D

′′
), fα

p (A, S
′′
) → C

′′
. Let us denote l(E)

the unique g-word such that E → l(E) with l(E) being a left g-word. l(E) is
uniquely defined by induction if |E| ≤ n − 1. The assumption D

′ �= D
′′

implies
l(D

′
) �= l(D

′′
) since sk(D

′
) = sk(D

′′
). Therefore it implies also the existence in

AS |B|(B) of two g-words, namely fβ
′

q′−p
(l(S

′
), l(D

′
)) and fβ

′′

q′′−p
(l(S

′′
), l(D

′′
)),

which have equal skeletons but are different since l(D
′
) �= l(D

′′
). This con-

tradicts the inductive hypothesis. Therefore we obtain D
′

= D
′′
. We have

B → fβ
′

q′−p
(l(S

′
), D

′
) and B → fβ

′′

q′′−p
(l(S

′′
), D

′
). These two g-words have the

same skeletons in AS |B|(B) with |B| ≤ n−1. They are therefore equal: β
′
= β

′′
,

q
′
= q

′′
and l(S

′
) = l(S

′′
). Now let us consider the following diagram:

266 J.-M. Pallo

Fig. 2. The associahedron AS5

C
′ ← fα

p (A, S
′
) → fα

p (A, l(S
′
)) = fα

p (A, l(S
′′
)) ← fα

p (A, S
′′
) → C

′′

The induction hypothesis can be applied because |C ′ | = |C ′′ | ≤ n − 1. Then
sk(C

′
) = sk(C

′′
) implies C

′
= C

′′
and a contradiction holds. 	

Remark 1. The associahedrons ASn(w) endowed with the ordering → are lat-
tices for all n and w ∈ Mn. This is an immediate consequence of the fact that the
skeleton of ASn(w) is the well-known n-th Tamari lattice. Tamari lattices have
been extensively studied for algebraic and combinatorial purposes. A number of
references on this subject are available in [24].

Remark 2. The rewrite ordering → is convergent. The unique normal form of w
is the left g-word l(w).

Theorem 2. Given a set of nonassociative operations Ξ = {fα, fβ , fγ , . . .} on
V ∗, the embedding Ψ of M(Ξ, V ∗) in M(F , V ∗) with F = {fα

p , α ∈ Ω, p ∈ Z}
defined by Ψ(x) = x for all x ∈ V ∗ and Ψ(fα) = fα

1 , Ψ(fβ) = fβ
1 , Ψ(fγ) = fγ

1
is injective.

Proof. The proof is by induction on the length of the g-words of M(Ξ, V ∗).
There are two types of g-words of length 3, namely fα(x, fα(y, z)) and
fα(fα(x, y), z) with x, y, z ∈ V . Their images are respectively fα

1 (x, fα
1 (y, z)) =

Nonassociativity à la Kleene 267

fα
2 (fα

1 (x, y), z) and fα
1 (fα

1 (x, y), z) = fα
1 (x, fα

0 (y, z)). They are quite different.
For g-words of length n, let w = fα(A, B) and w′ = fα(A′, B′) such that Ψ(w) =
Ψ(w′), i.e. fα

1 (Ψ(A), Ψ(B)) = fα
1 (Ψ(A′), Ψ(B′)). If we denote l(C) the unique left

g-word such that C → l(C), then fα
1 (Ψ(A), Ψ(B)) → fα

1 (l(Ψ(A′)), l(Ψ(B′))).
If there exists S such that Ψ(B) → fα

0 (S, l(Ψ(B′))), then following Theorem
1 we obtain l(Ψ(B)) = l(fα

0 (S, l(Ψ(B′)))). l(Ψ(B)) cannot contain operations
indexed by 0, hence the contradiction. Therefore we have Ψ(A) → l(Ψ(A′)),
Ψ(B) → l(Ψ(B′)) and by symmetry Ψ(A) = Ψ(A′) and Ψ(B) = Ψ(B′) proving
that w = w′. 	

Remark 3. The embedding of a nonassociative operation fα into an infinite set
{fα

p , p ∈ Z} may look strange. We had better embed into a finite set of oper-
ations. If one considers Z/nZ in place of Z, coherence Theorem 1 still holds.
Unfortunately, in this case we obtain necessarily weak associativity equalities.
For instance, if n = 3:

fα
1 (x, fα

1 (y, fα
1 (z, fα

1 (u, v)))) = fα
1 (fα

1 (x, fα
1 (y, fα

1 (z, u))), v)

since the normal forms of both members in this equality are:

fα
1 (fα

0 (fα
2 (fα

1 (x, y), z), u), v).

It is completely clear that the larger n, the less weak associativity relations. But
by Theorem 2, we see that no weak associativity relation occurs as soon as we
embed into a countable set.

6 Rational Formal Power Series

We use the classical notations on formal power series described in [5,13,32].
Given a semiring A, we denote by A[[R]] the set of formal series

s =
∑
σ∈R

< s, σ > σ

where < s, σ >∈ A.
The sum of two series is classicaly defined. The product s = fα

p (s
′
, s

′′
) is

defined by < s, σ >=< s
′
, σ

′
>< s

′′
, σ

′′
> if σ = fα

p (σ
′
, σ

′′
) and < s, σ >= 0

otherwise.
s ∈ A[[R]] is proper if the coefficient of the right unit λ (i.e. the constant term

of s) vanishes: < s, λ >= 0.
In this case, the series s∗α = λ + s + fα

0 (s, s) + fα
0 (s, fα

0 (s, s) + fα
0 (s, fα

0 (s, fα
0

(s, s)+ . . . is defined. Since fα
0 is associative, we have also s∗α = λ+s+fα

0 (s, s)+
fα
0 (fα

0 (s, s), s) + fα
0 (fα

0 (fα
0 (s, s), s), s) +

Definition 5. We call s∗α the Kleene star of the series s ∈ A[[R]] with respect
to α ∈ Ω.

268 J.-M. Pallo

Remark 4. It is enough to observe that this Kleene star operation s∗α is defined
from an associative operation fα

0 as in the classical case.

Lemma 2. Let r, s ∈ A[[R]] with s proper. Then the unique solution u of the
left-linear equation u = r + fα

p (u, s) is the series u = fα
p (r, s∗α).

Proof. One has s∗α = λ + fα
0 (s∗α , s) whence fα

p (r, s∗α) = fα
p (r, λ) + fα

p (r, fα
0

(s∗α , s)). Since λ is a right unit and following (RAS): fα
p (r, s∗α) = r + fα

p (fα
p

(r, s∗α), s).
Conversely, from u = r + fα

p (u, s) it follows that u = r + fα
p (r + fα

p (u, s), s) =
r + fα

p (r, s) + fα
p (u, fα

0 (s, s)) = r + fα
p (r, s) + fα

p (u, fα
0 (fα

0 (s, s), s))) =
Inductively and going to the limit, one gets u = fα

p (r, s∗α) since s is proper.
	

7 Kleene Theorem

Definition 6. A formal series is rational if it is an element of the smallest
subset Rat[[M]] of A[[R]] containing V ∗ and closed for the sum, product and
Kleene star operations ∗α for all α ∈ Ω.

Definition 7. A left-linear system of order N with rational coefficients is a
system of the form

ui = ri +
∑

1≤j≤N

∑
1≤k≤Nj

f
αi,j,k
pi,j,k (uj , si,j,k)

with 1 ≤ i ≤ N where all ri, si,j,k ∈ Rat[[R]], αi,j,k ∈ Ω and pi,j,k ∈ Z.

Theorem 3. The components of the N -tuple solution of a left-linear system
with proper rational coefficients are rational series. Conversely, a rational series
can be obtained as a component of a N -tuple solution of such a system.

Proof. The proof is by induction on N . According to Lemma 2, the solution of
u = r + fα

p (u, s) is u = fα
p (r, s∗α) which is a rational series since r, s ∈ Rat[[R]].

The solution u of the equation u = r + fα
p (u, s) + fβ

q (u, t) is solution of the
equation u = fβ

q (r + fα
p (u, s), t∗β) and we can write:

u = fβ
q (r, t∗β)+fβ

q (fα
p (u, s), t∗β). Thus u = fβ

q (r, t∗β)+fα
p (u, fβ

q−p(s, t
∗β)) and

the solution u = fα
p (fβ

q (r, t∗β), (fβ
q−p(s, t

∗β))∗α) is rational since r, s, t ∈ Rat[[R]].
Similarly and by induction on M , the solution of

u = r +
∑

1≤k≤M

fαk
pk

(u, sk)

is rational if r, sk ∈ Rat[[R]] for all k ∈ [1, M]. In a system S of order N , uN

is rationally computed from u1, u2, . . . , uN−1 and the induction hypothesis is
applied.

Nonassociativity à la Kleene 269

Conversely, let us prove that the components which are solutions of left-linear
systems with rational coefficients verify the conditions of Definition 6. Let us
denote u1 (respectively u

′

1) the first component of the N -tuple solution (respec-
tively N

′
-tuple solution) of a system S (respectively S ′

):

S : ui = ri +
∑

1≤j≤N

∑
1≤k≤Nj

f
αi,j,k
pi,j,k (uj , si,j,k), 1 ≤ i ≤ N

and

S ′
: u

′

i = r
′

i +
∑

1≤j≤N ′

∑

1≤k≤N
′
j

f
α

′
i,j,k

p
′
i,j,k

(u
′

j , s
′

i,j,k), 1 ≤ i ≤ N
′

where all ri, r
′

i, si,j,k, s
′

i,j,k ∈ Rat[[R]], αi,j,k, α
′

i,j,k ∈ Ω and pi,j,k, p
′

i,j,k ∈ Z.
It is easy to exhibit a system which admits as solution c1u1 + c

′

1u
′

1 with
c1, c

′

1 ∈ A. Now, let ũi = fα
p (u

′

1, ui). Then

fα
p (u

′

1, ui) = fα
p (u

′

1, ri) +
∑

1≤j≤N

∑
1≤k≤Nj

fα
p (u

′

1, f
αi,j,k
pi,j,k (uj , si,j,k))

and

fα
p (u

′

1, ui) = fα
p (u

′

1, ri) +
∑

1≤j≤N

∑
1≤k≤Nj

f
αi,j,k

p+pi,j,k
(fα

p (u
′

1, uj), si,j,k).

Thus ũ1 = fα
p (u

′

1, u1) is the first component of the N -tuple solution of the sys-
tem S̃:

ũi = fα
p (u

′

1, ri) +
∑

1≤j≤N

∑
1≤k≤Nj

f
αi,j,k

p+pi,j,k
(ũj , si,j,k).

To conclude, let ūi = fα
0 (u∗α

1 , ui). Then

fα
0 (u∗α

1 , ui) = fα
0 (u∗α

1 , ri) +
∑

1≤j≤N

∑
1≤k≤Nj

fα
0 (u∗α

1 , f
αi,j,k
pi,j,k (uj , si,j,k))

and

fα
0 (u∗α

1 , ui) = fα
0 (u∗α

1 , ri) +
∑

1≤j≤N

∑
1≤k≤Nj

f
αi,j,k
pi,j,k (fα

0 (u∗α
1 , uj), si,j,k).

Thus ū1 = fα
0 (u∗α

1 , u1) = u∗α
1 − λ is the first component of the N -tuple solution

of the system S∗:

ūi = fα
0 (u∗α

1 , ri) +
∑

1≤j≤N

∑
1≤k≤Nj

f
αi,j,k
pi,j,k (ūj , si,j,k). 	

270 J.-M. Pallo

8 Generalization of the Relative Associativity

The coherence Theorem 1 about binary operations can be generalized to ternary
operations by usual binarizations. The left (respectively right) binarization of a
ternary operation t is obtained by replacing t(P, Q, R) by b(b(P, Q), R) (respec-
tively b(P, b(Q, R))) where b is a binary operation. Since our binary operations
have indices in Z and exponents in Ω, the indices and exponents of our forthcom-
ing ternary operations will live in Z×Z and Ω×Ω. More precisely, gα,β

p,q (P, Q, R)
(respectively hα,β

p,q (P, Q, R)) will come from the left binarization fα
p (fβ

q (P, Q), R)
(respectively right binarization fα

p (P, fβ
q (Q, R)).

By left binarization, the relation → of Definition 3 can be generalized as follows:

gα,β
p,q (P, Q, gγ,δ

r,s (R, S, T)) 1→ gγ,β
p+r,q(P, gδ,α

p+s−q,p−q(Q, R, S), T)

gα,β
p,q (P, gγ,δ

r,s (Q, R, S), T) 2→ gα,γ
p,q+r(g

δ,β
q+s,q(P, Q, R), S, T)

gα,β
p,q (P, Q, gγ,δ

r,s (R, S, T)) 3→ gγ,δ
p+r,p+s(g

α,β
p,q (P, Q, R), S, T)

with 3→= 2→ ◦ 1→ and for all P, Q, R, S, T ∈ M, α, β, γ, δ ∈ Ω, p, q, r, s ∈ Z.

See Figure 3 with p, q, r, s, u, v ∈ Z, α, β, γ, δ, η, ν ∈ Ω and x1, x2, x3, x4,
x5, x6, x7 ∈ V . By right binarization, the relation → of Definition 3 can be
generalized as follows:

hα,β
p,q (P, Q, hγ,δ

r,s (R, S, T)) 1→ hα,δ
p,q+r+s(P, hβ,γ

q,r (Q, R, S), T)

hα,β
p,q (P, hγ,δ

r,s (Q, R, S), T) 2→ hδ,β
p+r+s,q−r−s(hα,γ

p,r (P, Q, R), S, T)

hα,β
p,q (P, Q, hγ,δ

r,s (R, S, T)) 3→ hγ,δ
p+q+r,s(hα,β

p,q (P, Q, R), S, T)

with 3→= 2→ ◦ 1→. See Figure 4.

Fig. 3. The ternary associahedron obtained by left binarization

Nonassociativity à la Kleene 271

Fig. 4. The ternary associahedron obtained by right binarization

Fig. 5. f-g-g distributive diagram

Notice that the skeleton of Figures 3 and 4 is not a lattice but is a χ-lattice
in the sense of Leutola-Nieminen [23].

Distributivity in the classical sense [20] can be generalized to ”relative” dis-
tributibity as follows. The family of binary operations {fα

p , α ∈ Ω, p ∈ Z} is said
relative distributive with respect to the family {gη

q , η ∈ Λ, q ∈ Z} if the following
conditions hold:

272 J.-M. Pallo

Fig. 6. f-f-g distributive diagram

fα
p (P, fβ

q (Q, R)) 1→ fβ
pq(f

α
p (P, Q), R)

gη
p(P, gν

q (Q, R)) 2→ gν
p+q(g

η
p (P, Q), R)

fα
p (P, gη

q (Q, R)) 3→ gη
pq(f

α
p (P, Q), fα

p (P, R))
for all P, Q, R ∈ M, α, β ∈ Ω, η, ν ∈ Λ and p, q ∈ Z.
The corresponding diagrams are coherent: see Figures 5 and 6.

9 Conclusion

Theorem 3 characterizes -la-Kleene rational series defined in a very general
way. This is done with concatenations that may be either associative or not.
Moreover, our Kleene stars are defined uniquely on the basis of associative
operations as in the classical case. This noteworthy fact follows from the for-
mula fα

p (fα
p (P, Q), R) = fα

p (P, fα
0 (Q, R)) which generalizes the Postulate A of

Suschkewitsch [33]. The proof of Theorem 3 works since, pointing out the role
of f , it follows from (RAS) that f(P, g(Q, R)) = h(f(P, Q), R). Indeed the first
part of the proof is based upon fβ

q (fα
p (u, s), t) = fα

p (u, fβ
q−p(s, t)). For the con-

verse, we twice use the relation fα
p (u, fα

′

p′ (s, t)) = fα
′

p+p′(fα
p (u, s), t), first for p

arbitrary, second for p = 0.
In a forthcoming paper, we shall use (RAS) in order to generalize a result on

the Hadamard product of an algebraic language and a rational language [6,28].

Acknowledgments

I am very indebted to an anonymous referee for proofreading my paper and
Jean-Paul Gauthier for linguistic help.

Nonassociativity à la Kleene 273

References

1. Ackél, J.: Lectures on Functional Equations and their Applications. Academic
Press, New-York (1966)

2. Ackél, J., Hosszú, M.: On transformations with several parameters and operations
in multidimensional spaces. Acta Math. Acad. Sci. Hungaricae 7, 327–338 (1956)

3. d’Adhémar, C.: Quelques classes de groupóıdes non-associatifs. Math. Sci. Hum. 31,
17–31 (1970)

4. Alexandrakis, A., Bozapalidis, S.: Weighted grammars and Kleene’s theorem. In-
form. Process. Lett. 24, 1–4 (1987)

5. Berstel, J., Reutenauer, C.: Rational Series and their Langages. In: EATCS Mono-
graphs on Theoretical Computer Science, vol. 12, Springer, Heidelberg (1988)

6. Bozapalidis, S.: Context-free series on trees. Inform. Comput. 169, 186–229 (2001)

7. Gécseg, F., Steinby, M.: Tree Languages. In: Rosenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages. Beyond Words, vol. 3, pp. 1–68. Springer, Heidel-
berg (1997)

8. Germain, C., Pallo, J.: Langages rationnels définis avec une concaténation non-
associative. Theor. Comput. Sci. 233, 217–231 (2000)

9. Germain, C., Pallo, J.: Linear languages with a nonassociative concatenation. J.
Autom. Lang. Comb. 7, 311–320 (2002)

10. Harris, Z.: A Theory of Language and Information: a Mathematical Approach.
Oxford University Press, Oxford (1991)

11. Hausmann, B.A., Ore, O.: Theory of quasigroups. Amer. J. Math. 59, 983–1004
(1937)

12. Kostrikin, A.L., Shafarevich, I.R. (eds.): Algebra VI. Encyclopaedia of Mathemat-
ical Sciences, vol. 57. Springer, Heidelberg (1995)

13. Kuich, W.: Semirings and Formal Power Series: Their Relevance to Formal Lan-
guages and Automata. In: Rosenberg, G., Salomaa, A. (eds.) Handbook of Formal
Languages. Word, Language, Grammar, vol. 1, pp. 609–677. Springer, Heidelberg
(1997)

14. Kunen, K.: Quasigroups, loops and associative laws. J. Algebra 185, 194–204 (1996)

15. Lõhmus, J.: Preface to the Special Issue on Nonassociative Algebras, Quasigroups
and Applications in Physics. Acta Applic. Math. 50, 1–2 (1998)

16. Lõhmus, J., Paal, E., Sorgsepp, L.: About nonassociativity in mathematics and
physics. Acta Applic. Math. 50, 3–31 (1998)

17. Mac Lane, S.: Natural associativity and commutativity. Rice Univ. Stud. 49, 28–46
(1963)

18. Mac Lane, S.: Preface to ”Coherence in Categories”. Lecture Notes in Math.,
vol. 281. Springer, Heidelberg (1970)

19. Murdoch, D.C.: Quasigroups which satisfy certain generalized associative law.
Amer. J. Math. 61, 509–522 (1939)

20. Pallo, J.M.: Word problem in distributive magmas. Fund. Inform. 4, 957–973 (1981)

21. Pallo, J.M.: Modéles associatif-relatif et commutatif cohérents appliqués aux lan-
gages réguliers. Calcolo 19, 289–300 (1982)

22. Pallo, J.M.: Coding binary trees by embedding into the Roubaud’s magma. Rad.
Mat. 2, 21–34 (1986)

23. Pallo, J.M.: The rotation χ-lattice of ternary trees. Computing 66, 297–308 (2001)

24. Pallo, J.M.: Generating binary trees by Glivenko classes on Tamari lattices. Inform.
Process. Lett. 85, 235–238 (2003)

274 J.-M. Pallo

25. Pallo, J.M.: Permutoassociaédres d’arbres binaires étiquetés. Rad. Mat. 13, 5–14
(2004)

26. Pflugfelder, H.O.: Historical notes on loop theory. Comment. Math. Univ. Caroli-
nae 41, 359–370 (2000)

27. Roubaud, J.: Types d’A-algèbres discrètes complètes: un théorème des fonctions
implicites. C. R. Acad. Sc. Paris 261, 3005–3007 (1965)

28. Roubaud, J.: Sur un théorème de M. P. Schützenberger. C. R. Acad. Sc. Paris 261,
3265–3267 (1965)

29. Roubaud, J.: La notion d’associativité relative. Math. Sci. Hum. 34, 43–59 (1970)
30. Sade, A.: Théorie des systèmes demosiens de groupöıdes. Pacific J. Math. 10, 625–

660 (1960)
31. Sade, A.: Groupöıdes en relation associative et semigroupes. Ann. Soc. Sc. Brux-

elles 75, 52–57 (1961)
32. Salomaa, A.: Formal Languages and Power Series. In: Van Leeuwen, J. (ed.) Hand-

book of Theoretical Computer Science, ch. 3, vol. B, pp. 103–132. Elsevier, Ams-
terdam (1990)

33. Suschkewitsch, A.: On a generalization of the associative law. Trans. Amer. Math.
Soc. 31, 204–214 (1929)

Restarting Tree Automata and

Linear Context-Free Tree Languages

Heiko Stamer and Friedrich Otto

Fachbereich Elektrotechnik/Informatik, Universität Kassel
D-34109 Kassel, Germany

{stamer,otto}@theory.informatik.uni-kassel.de

Abstract. We derive a normal form for linear context-free tree gram-
mars that involves only growing productions. Based on this normal form
we then show that all linear context-free tree languages are recognized
by restarting tree automata which utilize auxiliary symbols.

1 Introduction

Originally restarting automata were introduced to model the so-called analysis
by reduction, which is a technique used in linguistics to analyze sentences of nat-
ural languages with free word order [9,13]. This technique consists in a stepwise
simplification of a sentence in such a way that the syntactical correctness or in-
correctness is not affected. After a finite number of steps either a correct simple
sentence is obtained, or the core of an error is detected.

A restarting automaton has a finite-state control and a read/write window of
a fixed size that works on a flexible tape delimited by a left and a right sentinel.
It works in cycles, where in each cycle the current string is read and a single
local rewrite is executed. After a finite number of cycles the automaton either
halts and accepts, or it halts without accepting.

Actually, many variants of restarting automata have been introduced and
studied. All these variants work on linear text, that is, on strings, although
trees are often used in linguistics (as well as in formal language theory and
its applications) to describe sentences of a language together with some struc-
tural information. Therefore, in [17] the notion of restarting automata has been
extended from strings to trees, defining some basic types of restarting tree au-
tomata, and establishing some fundamental results on their expressive power and
on the closure properties of the recognized families of tree languages.

Here we continue the study of restarting tree automata by showing that each
linear context-free tree language is recognized by a restarting tree automaton
that is allowed to use auxiliary symbols. Linear context-free tree grammars are of
interest from a linguistic point of view, as linear, nondeleting, monadic context-
free tree grammars generate the same class of string languages as tree adjoining
grammars [7] and some other formalisms studied in linguistics (see, e.g., [18]).
Our proof is based on the fact that each linear context-free tree grammar can be
transformed into an equivalent linear context-free tree grammar that has only

S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 275–289, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

276 H. Stamer and F. Otto

growing productions. Fujiyoshi [5,6] has shown a similar result for linear context-
free tree grammars that are monadic. Furthermore, Seki and Kato [16, Lemma 7]
have shown a corresponding normalization result for macro grammars.

This paper is structured as follows. After giving the basic definitions and es-
tablishing the necessary notation in Section 2, we present the announced trans-
formation of linear context-free tree grammars in Section 3. Then in Section 4 we
establish our main result showing that each linear context-free tree language is
recognized by a restarting tree automaton. The paper closes with some remarks
and suggestions for future work.

2 Preliminaries

A ranked alphabet F is a finite nonempty set of symbols such that each f ∈ F
has a unique nonnegative arity (or rank) denoted by Rnk(f). Symbols of arity
zero are called constants. The subset of symbols of arity n is denoted by Fn.
Further, let X = { xi | i ≥ 1 } be a countable set of variables, which are symbols
of rank zero. Note that X is always assumed to be disjoint from any other ranked
alphabet. Finally, let Xn = {x1, . . . , xn} be the finite subset of X that consists
of the first n ≥ 1 variables (with respect to the natural ordering on the set of
indices).

By T (F , X) we denote the set of all terms over F with variables in X . For
t ∈ T (F , X), Var(t) denotes the set of variables that occur in t. A term is linear,
if no variable occurs more than once in it. Terms without variables are called
ground terms. The set of ground terms over F is denoted by T (F).

A term can be considered as a finite ordered ranked tree whose leaves are
labeled with variables or constants and whose internal nodes are labeled with
symbols of positive arity. Positions in a term are represented by sequences of
positive integers, where the empty sequence ε denotes the position at the root
of the tree. The set of positions of a term t ∈ T (F , X) is denoted by Pos(t). By
Top(t) we denote the outermost symbol of t, which is the symbol at the root.
For p ∈ Pos(t) we use the notation t|p to denote the subterm of t at position p.
Further, by t[u]p we denote the term that is obtained from t by replacing the
subterm t|p by the term u. Finally, a term t is called a scattered subterm of a
term t′, if t is homeomorphically embedded in t′, that is, t can be obtained from
t′ by “striking out” some parts (see, e.g., [3]). The size ||t|| and the height Hgt(t)
of a term t are defined inductively as follows:

||t|| = 0, Hgt(t) = 0, if t ∈ X ,
||t|| = 1, Hgt(t) = 0, if t ∈ F0,

||t|| = 1 +
n∑

i=1

||(t|i)||, Hgt(t) = 1 + max
i=1,...,n

Hgt(t|i), if n ≥ 1 and
Top(t) ∈ Fn.

A substitution is a mapping from X into T (F , X) that is the identity on all
but finitely many variables. Each substitution can uniquely be extended to the
domain T (F , X). We write substitutions always in prefix notation, that is, σt
denotes the result of applying σ to the term t ∈ T (F , X).

Restarting Tree Automata 277

Let ε be a special constant from F0, and let ΣF = { a | a ∈ F0 � {ε} } be
the finite alphabet that contains all constants from F0 but ε. Then Σ∗

F denotes
the set of all words over ΣF including the empty word ε. The yield of a ground
term t ∈ T (F) is the string defined by the mapping Yld : T (F) → Σ∗

F , where

Yld(t) = a, if t = a and a ∈ ΣF ,
Yld(t) = ε, if t = ε,
Yld(t) = Yld(t|1) · Yld(t|2) · · · Yld(t|n), if n ≥ 1 and Top(t) ∈ Fn.

We abuse the notation Yld for the yield of a set of ground terms E ⊆ T (F),
that is, Yld(E) = { Yld(t) | t ∈ E }, which is a string language over ΣF .

A linear term t ∈ T (F , Xn) satisfying the condition Var(t) = Xn is called
an n-context, and by t[t1, . . . , tn] we denote the term that is obtained from t by
replacing each variable xi ∈ Xn by ti ∈ T (F , X) (1 ≤ i ≤ n). The set of all
n-contexts is denoted as Ctx(F , Xn).

A rewrite rule is a pair of terms, denoted by l → r, where l, r ∈ T (F , X),
l �∈ X , and Var(l) ⊇ Var(r). It is called linear, if both l and r are linear terms. A
rule is called nondeleting, if Var(l) = Var(r), that is, all variables of l occur in r.
A term rewriting system (TRS) is a set R of rewrite rules. The induced rewrite
relation →R over T (F , X) is the least relation containing R that is closed under
subterm replacement and substitution. Thus, a term t ∈ T (F , X) rewrites to t′,
denoted as t →R t′, if there exist a rewrite rule (l → r) ∈ R, a substitution
σ : X → T (F , X), and a position p ∈ Pos(t) such that t|p = σl and t′ = t[σr]p.
By →∗

R we denote the reflexive transitive closure of →R. A TRS R is called
linear (nondeleting), if all its rewrite rules are linear (nondeleting).

A context-free tree grammar (CFTG) G = (F , N , P , S) consists of two disjoint
ranked alphabets F and N , a finite TRS P , and an initial symbol S ∈ N0. The
elements of F are terminal symbols, and those of N are nonterminal symbols.
All rules (productions) from P are of the form A(x1, . . . , xn) → t, where n ≥ 0,
A ∈ Nn, {x1, . . . , xn} = Xn, and t ∈ T (F ∪ N , Xn) is a term. The unrestricted
derivation relation ⇒G and the reflexive transitive closure ⇒∗

G are induced by P .
The tree language generated by G is L(G) = { t ∈ T (F) | S ⇒∗

G t }.
For any class G of tree grammars, L (G) denotes the class of tree languages

that are generated by grammars from G. A context-free tree grammar is called
linear (lin-CFTG), if the corresponding TRS P is linear. It is called monadic, if
N = N0 ∪N1, that is, all nonterminal symbols are constants or unary functions,
and it is called regular (RTG), if all its nonterminal symbols are constants, that is,
N = N0. A context-free tree grammar is called nondeleting, if the corresponding
TRS P is nondeleting. It is called growing, if each rule of P is of the form
A(x1, . . . , xn) → t, where n ≥ 0, A ∈ Nn, and t ∈ T (F ∪ N , Xn) satisfying
Var(t) = Xn and ||t|| ≥ 2, or of the form S → s, where s ∈ T (F ∪ N). Observe
that a growing grammar is necessarily nondeleting. A set of ground terms E ⊆
T (F) is a (linear) context-free tree language, if there exists a (linear) context-free
tree grammar G such that L(G) = E.

278 H. Stamer and F. Otto

We recall some results on context-free tree languages. Guessarian has defined
an equivalent type of automaton – the so-called pushdown tree automaton [8].
This automaton is equipped with an auxiliary pushdown storage and works in
top-down manner. Later Schimpf and Gallier introduced a tree pushdown au-
tomaton that processes its input tree from the leaves to the root (bottom-up).
It was shown that this automaton yields another equivalent representation for
context-free tree languages [15]. Moreover, for every context-free tree language
E ⊆ T (F) the corresponding yield language Yld(E) ⊆ Σ∗

F is an indexed lan-
guage [2,4]. The converse statement is also true, since our definition of the Yld-
mapping incorporates the special constant ε ∈ F0. Moreover, it was shown that
the derivation mode used (inside-out or outside-in, respectively) is irrelevant
for linear context-free tree grammars [10]. We will use this fact extensively in
Section 3.

For context-free tree grammars several normal forms have been proposed (see,
e.g., [1,11,12,14]). Here we only need the following variant which was originally
introduced by Maibaum [11] and later specified by Schimpf and Gallier [15] in
more detail. A context-free tree grammar is in Chomsky normal form (CNF), if
each production is of one of the following types

F (x1, . . . , xn) → G(H1(x1, . . . , xn), . . . , Hm(x1, . . . , xn)),
F (x1, . . . , xn) → f(xj1 , . . . , xjm),
F (x1, . . . , xn) → xk,

where m ≥ 0, j1, . . . , jm, k ∈ {1, . . . , n}, F ∈ Nn, G ∈ Nm, Hi ∈ Nn (1 ≤ i ≤ m),
f ∈ Fm, and xi ∈ Xn (1 ≤ i ≤ n). Maibaum and Schimpf have shown that every
context-free tree grammar G can be rewritten as a grammar G′ in Chomsky
normal form such that L(G) = L(G′) holds.

Of course, to convert an arbitrary linear context-free tree grammar into a
similar normal form, the first of the above types of productions must be modified
slightly to

F (x1, . . . , xn) → G(H1(xj1,1 , . . . , xj1,h1
), . . . , Hm(xjm,1 , . . . , xjm,hm

)),

where xj1,1 , . . . , xj1,h1
, . . . , xjm,1 , . . . , xjm,hm

are distinct variables from Xn, F ∈
Nn, G ∈ Nm, and Hi ∈ Nhi for some integer hi ∈ {0, . . . , n} (1 ≤ i ≤ m) such
that

∑m
i=1 hi ≤ n holds. However, such a restricted form can be obtained easily

by adjusting Maibaum’s construction accordingly.

3 Growing Linear Tree Grammars

In this section we show that each linear context-free tree grammar can be trans-
formed into an equivalent linear context-free tree grammar that is growing. This
transformation is achieved in two steps: first we show how to transform a lin-
ear context-free tree grammar into an equivalent nondeleting linear context-free
tree grammar, and then we present a transformation into an equivalent growing
linear context-free tree grammar.

Restarting Tree Automata 279

Proposition 1. From a given linear context-free tree grammar G a nondeleting
linear context-free tree grammar G′ can be constructed such that L(G) = L(G′)
holds.

Proof. Let G = (F , N , P , S) be a linear context-free tree grammar in Chomsky
normal form. We will construct a sequence of linear context-free tree grammars
G = G0, G1, . . . , G� = G′, where Gk = (F , N k, Pk, S) for 0 ≤ k ≤ �, such that
all these grammars generate the same tree language, and G′ = G� is nondeleting,
that is, all rules (l → r) ∈ P� are linear context-free productions satisfying the
condition Var(l) = Var(r). Throughout this construction we will maintain a set
P ′ that will contain all those rules which have already been processed.

Our construction consists of three transformation rules T1, T2, and T3. First
T1 is applied as long as it is applicable, then T2 is applied iteratively as long
as possible, and then the same is done with T3. Once this process terminates,
the linear context-free tree grammar obtained has the desired properties. We
start with the tree grammar G0 = G, that is, N 0 := N , P0 := P , and P ′ = ∅.
Below we describe the various transformation rules in detail. If Gk is the current
tree grammar, then the next transformation step will generate the tree grammar
Gk+1 from Gk. It starts by taking N k+1 := N k and Pk+1 := Pk.

– Transformation rule T1:
Choose a projection rule F (x1, . . . , xn) → xj from Pk+1, delete it from Pk+1,
and add it to the set P ′. Now consider all rules (l → r) ∈ Pk+1 that contain an
occurrence of the symbol F in their right-hand side r. Let R consist of all terms
that are obtained by replacing one or more subterms of r with outermost symbol
F by their j-th subterm, respectively, that is, if r|p = F (s1, . . . , sn), then r[sj]p
is contained in R. For all r′ ∈ R, if l �= r′ and (l → r′) �∈ P ′, then add the rule
l → r′ to the set Pk+1. Here the test (l → r′) �∈ P ′ is used to ensure that no
rule is introduced into Pk+1 that has already been processed previously. This
completes the description of transformation rule T1.

Unfortunately, this transformation will in general destroy the Chomsky nor-
mal form, as we may obtain rules like G(x1, . . . , xm) → H(x1, . . . , xm) or even
new projection rules like G(x1, . . . , xm) → xj . However, the process of iterat-
ing T1 will terminate eventually, since for each rule l → r′ introduced, we have
||r′|| < ||r||. Thus, there exists a point from where on no new projection rules
can occur, that is, all projection rules that are generated from that point on are
already contained in P ′.

– Transformation rule T2:
Choose a rule F (x1, . . . , xn) → f(xj1 , . . . , xjn̄) from Pk+1 such that 0 ≤ n̄ < n
and 1 ≤ ji ≤ n for all i = 1, . . . , n̄. If F̄α �∈ N k+1, add a fresh nontermi-
nal F̄α of arity n̄ to N k+1, delete the above rule, and create the new rule
F̄α(xμ1 , . . . , xμn̄) → f(xj1 , . . . , xjn̄), where α = {1, . . . , n} � {j1, . . . , jn̄} is a
label that indicates the arguments removed, 1 ≤ μ1 < μ2 < · · · < μn̄ ≤ n, and
μi = π(ji) for all 1 ≤ i ≤ n̄ and an appropriate permutation π of the index
set {1, . . . , n}. By replacing the variable xμi by xi for all i = 1, . . . , n̄, we obtain

280 H. Stamer and F. Otto

the normalized variant of this rule, which is added to Pk+1. Further, the rule
F (x1, . . . , xn) → f(xj1 , . . . , xjn̄) is put into P ′.

Next, we consider all productions (l → r) ∈ Pk+1 with at least one occur-
rence of F in the right-hand side. Let p1, . . . , pm ∈ Pos(r) be those positions
for which Top(r|pi) = F holds. Build all possible variants of the rule l → r,
where the subterm F (t1, . . . , tn) of r is replaced by F̄α(tμ1 , . . . , tμn̄) at some of
the positions p1, . . . , pm. All these new rules are added to Pk+1. Note that the
original production l → r must remain in Pk+1, as there may exist other rules
with left-hand side F (x1, . . . , xn). However, if no such rule exists, then l → r
has become a useless production, and we can remove it from Pk+1.

– Transformation rule T3:
Choose a rule F (x1, . . . , xn) → H(t1, . . . , tm) from Pk+1 such that t1, . . . , tm ∈
T (N , {x1, . . . , xn}) and n̂ := |

⋃m
i=1 Var(ti)| < n. We delete this rule from Pk+1

and add it to P ′. If F̂α �∈ N k+1, where α = {1, . . . , n} � { j | xj ∈
⋃m

i=1 Var(ti) }
is a label that indicates the arguments removed, then we add a fresh nonterminal
F̂α of arity n̂ to N k+1. Further, if F̂α(xμ1 , . . . , xμn̂

) �= H(t1, . . . , tm), then we
create the rule F̂α(xμ1 , . . . , xμn̂

) → H(t1, . . . , tm), where 1 ≤ μ1 < μ2 < · · · <
μn̂ ≤ n and μi is appropriately chosen (1 ≤ i ≤ n̂). As in transformation T2
we normalize this rule by replacing the variable xμi by xi for all i = 1, . . . , n̂.
If the resulting rule is not contained in P ′, then we add it to Pk+1. Again, for
all productions (l → r) ∈ Pk+1 with at least one occurrence of F in the right-
hand side r, we enlarge Pk+1 by all possible combinations that are obtained
by replacing a subterm F (s1, . . . , sn) of r by the term F̂α(sμ1 , . . . , sμn̂

). These
new rules l → r′ are only inserted into Pk+1, if l �= r′, (l → r′) �∈ Pk+1, and
(l → r′) �∈ P ′, that is, if they are nontrivial, if they are not already contained
in Pk+1, and if they have not already been processed before.

Termination: Note that each transformation removes a rule, or it replaces a rule
l → r by some rules l′ → r′ such that Rnk(Top(l′)) < Rnk(Top(l)) holds, or a
subterm of r is replaced in r′ by a term with an outermost symbol of smaller
arity. Moreover, the number of newly introduced nonterminals is bounded by the
initial grammar G0. Finally, loops are avoided by using the set P ′. It follows that
each sequence of transformations T1, T2, and then T3 terminates after finitely
many steps.

Correctness: All transformations preserve linearity and context-freeness. The
projection rules of G are removed by T1, and no new projection rules are intro-
duced by T2 or T3, as these transformations always replace nonterminals by other
nonterminals. Analogously, rules of the form F (x1, . . . , xn) → f(xj1 , . . . , xjn̄),
which are replaced by T2, cannot be reintroduced by T3. Thus, when the trans-
formation process terminates after � steps, then P� contains no deleting rule.
Hence, G� is a nondeleting linear context-free tree grammar. It remains to show
that L(G�) = L(G). For that it suffices to prove L(Gk) = L(Gk+1).

Restarting Tree Automata 281

Claim 1. L(Gk) ⊆ L(Gk+1).
Proof. Let S ⇒∗

Gk u1 ⇒Gk v1 ⇒∗
Gk t be a derivation of minimal length of the

ground term t ∈ T (F), where u1 ⇒Gk v1 is the first step that uses a rewrite
rule (l → r) ∈ Gk

� Gk+1. Hence, there exist a position p ∈ Pos(u1) and a
substitution σ such that u1|p = σ(l) and v1 = u1[σ(r)]p. Note that for linear
context-free tree grammars the derivation strategy used is of no concern [10].
Thus, we may assume that some steps of a derivation occur adjacent to each
other. Now consider each transformation rule separately:

– T1: Then (l → r) is of the form F (x1, . . . , xn) → xj , that is, u1|p =
F (t1, . . . , tn) and v1 = u1[tj]p. Let u′

1 ⇒Gk v′1 be the derivation step at which
the occurrence of the nonterminal F at position p ∈ Pos(u1) is generated,
that is, at this step a rule (l1 → r1) ∈ Pk is used such that the corresponding
subterm r1|q of r1 is of the form F (s1, . . . , sn). Now Pk+1 contains the rule
l1 → r1[sj]q. By applying this rule to u′

1 we obtain a Gk+1-derivation of v1
from u′

1.
– T2: Then (l → r) is of the form F (x1, . . . , xn) → f(xj1 , . . . , xjn̄), where

n̄ < n. Thus, u1|p = F (t1, . . . , tn) and v1|p = f(tj1 , . . . , tjn̄). Again, let
u′

1 ⇒Gk v′1 be the derivation step at which the occurrence of the non-
terminal F at position p ∈ Pos(u1) is generated, that is, at this step a
rule (l1 → r1) ∈ Pk is used such that the corresponding subterm r1|q of
r1 is of the form F (s1, . . . , sn). Now Pk+1 contains the added rule l1 →
r1[F̄α(sμ1 , . . . , sμn̄)]q. By using this rule instead of the original rule l1 → r1,
we obtain a derivation S ⇒∗

Gk+1 u1[F̄α(tμ1 , . . . , tμn̄)]p. As Gk+1 also contains
the normalized form of the rule F̄α(xμ1 , . . . , xμn̄) → f(xj1 , . . . , xjn̄), we see
that u1[F̄α(tμ1 , . . . , tμn̄)]p ⇒Gk+1 v1 holds.

– T3: Then (l → r) is of the form F (x1, . . . , xn) → H(t1, . . . , tm) such that
n̂ := |

⋃m
i=1 Var(ti)| < n, that is, Top(u1|p) = F and Top(v1|p) = H . As

before, let u′
1 ⇒Gk v′1 be the derivation step at which the occurrence of

the nonterminal F at position p ∈ Pos(u1) is generated, that is, at this
step a rule (l1 → r1) ∈ Pk is used such that the corresponding subterm
r1|q of r1 is of the form F (s1, . . . , sn). Now Pk+1 contains the added rule
l1 → r1[F̂α(sμ1 , . . . , sμn̄)]q. By using this rule instead of the original rule
l1 → r1, we obtain a derivation S ⇒∗

Gk+1 u1[F̂α(tμ1 , . . . , tμn̄)]p. As Gk+1 also
contains the normalized form of the rule F̂α(xμ1 , . . . , xμn̄) → H(t1, . . . , tm),
we see that u1[F̂α(tμ1 , . . . , tμn̄)]p ⇒Gk+1 v1 holds.

Proceeding by induction we obtain a derivation S ⇒∗
Gk+1 t. �

Claim 2. L(Gk) ⊇ L(Gk+1).

Proof. Note that the new nonterminal symbols of the form F̄α or F̂α are only
put at places where the symbol F occurred previously. Thus, the additional rules
of the form (l → r) ∈ Pk+1, where Top(l) = F̄α or Top(l) = F̂α, will not lead
to more ground terms. Also the effect of the rules introduced by transformation
rule T1 can be simulated by the original rules of Gk. �

282 H. Stamer and F. Otto

This completes the proof of Proposition 1. �

We illustrate the transformation described in Proposition 1 by an example.

Example 1. Consider the linear context-free tree grammar G = (F , N , P , S),
where F = {f(·, ·), s(·), a}, N = {F (·, ·), B(·), A, S}, and P contains only pro-
ductions in Chomsky normal form:

F (x1, x2) → F (B(x1), B(x2)), B(x1) → s(x1),
F (x1, x2) → f(x1, x2), A → a,

F (x1, x2) → x2, S → F (A, A).

Obviously, the generated tree language is

L(G) = {f(sn(a), sn(a)) | n ≥ 0} ∪ {sn(a) | n ≥ 0}.

Table 1 shows the transformation steps performed until the nondeleting gram-
mar G′ = (F , N 3, P3, S) is obtained, where the set of nonterminals is N 3 =
{F (·, ·), F̂{2}(·), B(·), A, S}, and P3 contains the following nondeleting
productions:

F (x1, x2) → F (B(x1), B(x2)), B(x1) → s(x1),
F (x1, x2) → f(x1, x2), A → a,

S → F (A, A), S → A,

S → F̂{1}(A),

F̂{1}(x1) → B(x1), F̂{1}(x1) → F̂{1}(B(x1)).

Table 1. Transformations performed in Example 1

k added nonterminals rules added to Pk rules added to P ′

1 T1
S → A

F (x1, x2) → B(x2)
F (x1, x2) → x2

2 T3 F̂{1}(·)
F̂{1}(x1) → B(x1)

S → F̂{1}(A)

F (x1, x2) → F̂{1}(B(x2))

F (x1, x2) → B(x2)

3 T3 F̂{1}(x1) → F̂{1}(B(x1)) F (x1, x2) → F̂{1}(B(x2))

Proposition 2. From a given linear context-free tree grammar G a growing
linear context-free tree grammar G′ can be constructed such that L(G) = L(G′)
holds.

Restarting Tree Automata 283

Proof. Let G = (F , N , P , S) be the given linear context-free tree grammar.
Because of Proposition 1 we can assume that G is nondeleting. We now apply
the following two transformations iteratively to derive G′ from G. If neither of
them is applicable anymore the process terminates. The system G′ obtained at
that point has the intended properties. Of course, during the construction we
can remove useless productions, too.

– Transformation rule T4:
A rule of the form F (x1, . . . , xn) → H(xj1 , . . . , xjn), where F, H ∈ Nn, is called
a unit production of G. To remove these unit productions from P we apply the
well-known technique from the Chomsky normal form construction for context-
free (string) grammars. However, for tree grammars the algorithm is slightly
more sophisticated, as we must keep track of permuted arguments when we
determine equivalent nonterminals. For example, if G contains the rules

E(x1, x2) → F (x2, x1), F (x1, x2) → H(x1, x2), H(x1, x2) → E(x2, x1),

then F (x1, x2) ⇒G H(x1, x2) ⇒G E(x2, x1) ⇒G F (x1, x2) implying that F and
H are equivalent, while E is equivalent to F and to H only modulo commuta-
tion of the arguments. To take care of this issue we can associate an appropriate
label with each nonterminal which represents the corresponding permutation of
its arguments. In the example above we would need two representatives, e.g.,
E(1,2) and E(2,1). Then equivalent nonterminals are replaced by a unique repre-
sentative, the unit productions are deleted, and for each of the remaining rules
all possible rules are created in which each nonterminal is replaced by one of its
representatives. In our example each E would have to be replaced by E(1,2) as
well as by E(2,1). Of course, we remove a unit production only, if F �= S.

– Transformation rule T5:
If F (x1, . . . , xn) → f(xj1 , . . . , xjn) is a rule, where F ∈ Nn � {S} and f ∈ Fn

(n ≥ 0), then we remove this production from P . For each of the remaining rules
with occurrences of the symbol F in the right-hand side, we enlarge P by adding
all combinations of that rule in which some occurrences of F (t1, . . . , tn) in the
right-hand side are replaced by the term f(tj1 , . . . , tjn).

Note that the above transformations preserve the property of being nondelet-
ing. It is now rather obvious that this process terminates, and that the resulting
context-free tree grammar G′ has all the intended properties. �

Example 2. Starting with the grammar G′ from Example 1 we have to apply the
transformation rule T4 for the unit productions F̂{1}(x1) → B(x1) and S → A.
First, we remove F̂{1}(x1) → B(x1) and obtain the additional rules

F̂{1}(x1) → B(B(x1)) and S → B(A).

For the unit production S → A we obtain no additional rules, because S does not
occur in the right-hand side of any rule. Note that the unit production S → A
is necessary, and that it is therefore not removed by transformation T4.

284 H. Stamer and F. Otto

Next the rules

F (x1, x2) → f(x1, x2), B(x1) → s(x1), and A → a

have to be processed according to transformation rule T5. By applying T5 to the
first of these productions we remove the rule F (x1, x2) → f(x1, x2) and insert
the rules

F (x1, x2) → f(B(x1), B(x2)), S → f(A, A)

into P . When we remove the production B(x1) → s(x1), we obtain many new
rules:

F (x1, x2) → F (B(x1), s(x2)), F (x1, x2) → F (s(x1), B(x2)),
F (x1, x2) → F (s(x1), s(x2)), F (x1, x2) → f(B(x1), s(x2)),
F (x1, x2) → f(s(x1), B(x2)), F (x1, x2) → f(s(x1), s(x2)),

F̂{1}(x1) → F̂{1}(s(x1)),

F̂{1}(x1) → B(s(x1)), F̂{1}(x1) → s(B(x1))

F̂{1}(x1) → s(s(x1)), S → s(A).

Finally, the removal of the last rule A → a leads to the following additional
productions:

S → F (A, a), S → F (a, A), S → F (a, a),
S → f(A, a), S → f(a, A), S → f(a, a),

S → F̂{1}(a), S → s(a), S → a.

At this point no productions with left-hand side A or B are left. Therefore,
all productions containing these nonterminals have become useless, that is, we
can now safely remove these productions. In this way we obtain the growing
grammar with the following productions:

F (x1, x2) → F (s(x1), s(x2)), F (x1, x2) → f(s(x1), s(x2)),

F̂{1}(x1) → F̂{1}(s(x1)), F̂{1}(x1) → s(s(x1)),
S → F (a, a), S → f(a, a),

S → F̂{1}(a), S → s(a),
S → a.

4 Restarting Tree Automata

Recently, restarting automata [9,13] have been generalized from strings to trees
[17]. Formally, a top-down restarting tree automaton (RRWWT-automaton, for
short) is given by a six-tuple A = (F , G, Q, q0, k, Δ), where F is a ranked input

Restarting Tree Automata 285

alphabet, G ⊇ F is a ranked working alphabet, Q = Q1 ∪ Q2 is a finite set of
states such that Q1 ∩Q2 = ∅, q0 ∈ Q1 is the initial state and simultaneously the
restart state, k ≥ 1 is the height of the read/write-window, and Δ = Δ1 ∪ Δ2 is
a finite term rewriting system on G ∪ Q. The rule set Δ1 only contains k-height
bounded top-down transitions of the form q(t) → t[q1(x1), . . . , qn(xn)], where
n ≥ 1, t ∈ Ctx(G, Xn), 1 ≤ Hgt(t) ≤ k, and q, q1, . . . , qn ∈ Q1, and k-height
bounded final transitions of the form q(t) → t, where t ∈ T (G), 0 ≤ Hgt(t) ≤ k,
and q ∈ Q1. The rule set Δ2 contains transitions of the following types:

1. Size-reducing rewrite transitions, that is, linear rewrite rules of the form

q(t) → t′[q1(x1), . . . , qn(xn)],

where n ≥ 1, t ∈ T (G, Xn), t′ ∈ Ctx(G, Xn), q ∈ Q1, and q1, . . . , qn ∈ Q2, and
size-reducing final rewrite transitions of the form q(t) → t′, where q ∈ Q1 and
t, t′ ∈ T (G). For both these types of transitions it is required that ||t|| > ||t′||
and Hgt(t) ≤ k.

2. k-height bounded top-down transitions of the form

q(t) → t[q1(x1), . . . , qn(xn)],

where n ≥ 1, t ∈ Ctx(G, Xn), 1 ≤ Hgt(t) ≤ k, and q, q1, . . . , qn ∈ Q2, and
k-height bounded final transitions of the form q(t) → t, where t ∈ T (G),
0 ≤ Hgt(t) ≤ k, and q ∈ Q2.

The partial move relation →Δ and its reflexive transitive closure →∗
Δ are induced

by the TRS Δ, while the final move relation →Δ1 and its reflexive transitive
closure →∗

Δ1
are induced by Δ1. We use the notation u ↪→A v (u, v ∈ T (G)) to

express the fact that there exists a cycle that starts with the configuration q0(u)
and finishes with the stateless configuration v, that is, q0(u)(→∗

Δ \ →+
Δ1

)v.
The relation ↪→∗

A is the reflexive transitive closure of ↪→A. The tree language
recognized by the RRWWT-automaton A is

L(A) =
{

t ∈ T (F) | ∃t′ ∈ T (G) such that t ↪→∗
A t′ and q0(t′) →∗

Δ1
t′

}
.

The (auxiliary) simple tree language recognized by A is SF (A) = { t ∈ T (F) |
q0(t) →∗

Δ1
t } and SG(A) = { t ∈ T (G) | q0(t) →∗

Δ1
t }, respectively.

A restarting tree automaton is called an RWWT-automaton, if all its rewrite
transitions are of the special form q(t) → t′[x1, . . . , xn], where n ≥ 1, q ∈ Q1,
t ∈ T (G, Xn), and t′ ∈ Ctx(G, Xn) such that ||t′|| < ||t|| and Hgt(t) ≤ k. In this
case the subset Q2 of the set of states Q and the top-down and final transitions
from the rule set Δ2 are superfluous, as the automaton does not propagate
state information in affected branches after a rewrite has been performed. A
restarting tree automaton is an RRWT-automaton, if its working alphabet G
coincides with its input alphabet F , that is, no auxiliary symbols are available.
It is an RRT-automaton, if it is an RRWT-automaton for which the right-hand
side of every rewrite transition is a scattered subterm of the corresponding left-
hand side. Analogously, we obtain the RWT- and the RT-automaton from the
RWWT-automaton.

286 H. Stamer and F. Otto

Example 3. Let A = (F , G, Q, q0, k, Δ), where F = G = {f(·, ·), g(·), h(·), a},
Q = {q0, q1}, k = 3, and the TRS Δ is given by the following rules:

q0(f(g(h(a)), g(h(a)))) → f(g(h(a)), g(h(a))),
q0(f(g(x1), g(x2))) → f(g(q1(x1)), g(q1(x2))),

q1(g(x1)) → g(q1(x1)),
q1(g(h(h(x1)))) → h(x1).

Then A is an RT-automaton, and it is not hard to see that

L(A) = { f(gn(hn(a)), gn(hn(a))) | n ≥ 1 },

as A reduces both branches simultaneously until the term f(g(h(a)), g(h(a))) ∈
T (F) is obtained, which belongs to the simple tree language SF (A).

Based on the normal form for linear context-free tree grammars presented in
Proposition 2 we now derive our main result.

Theorem 1. Given a linear context-free tree grammar G an RWWT-automaton
A can be constructed such that L(G) = L(A) holds.

Proof. Let G = (F , N , P , S) be a linear context-free tree grammar. By Propo-
sition 2 we can assume that G is growing. Let CS be the set of all constants
c ∈ (F0 ∪ N0) such that P contains a rule S → c. For each rule (l → r) ∈ P ,
where the initial symbol S occurs at least once in the right-hand side r, we en-
large P by all combinations of that rule in which some occurrences of S in the
right-hand side are replaced by symbols from CS .

We construct an RWWT-automaton A = (F , G, Q, q0, k, Δ) by taking G :=
F ∪ N , Q := {q0, q1}, and by defining Δ as follows. Recall that Δ = Δ1 ∪ Δ2.
For each production from P of type F (x1, . . . , xn) → t, where n ≥ 0, F ∈ Nn,
||t|| > 1, and t ∈ T (F ∪ N , Xn), we add the linear rewrite transitions

q0(t) → F (x1, . . . , xn) and q1(t) → F (x1, . . . , xn)

to Δ2. Note that all these rewrite transitions are size-reducing. For each constant
t ∈ CS , we add the final top-down transition q0(t) → t to Δ1. Additionally, we
put the transition q0(S) → S into Δ1. Further, for each symbol F ∈ (Fn ∪ Nn),
where n > 0, Δ1 contains the rules q0(F (x1, . . . , xn)) → F (q1(x1), . . . , q1(xn))
and q1(F (x1, . . . , xn)) → F (q1(x1), . . . , q1(xn)). Here state q1 is used to guaran-
tee that the final transitions can only be applied at the root of a tree.

The automaton A simulates all derivations of G nondeterministically and in
reverse order. Let t ∈ L(G) be a ground term generated by G, and let

S ⇒G t1 ⇒∗
G · · · ⇒∗

G ti ⇒G ti+1 ⇒∗
G · · · ⇒∗

G t� = t

be a derivation in G. The automaton guesses in each cycle the correct production
from P . Then A applies the corresponding reverse transition on ti+1 to obtain

Restarting Tree Automata 287

ti and restarts. Finally, the automaton reaches either a constant t1 ∈ CS and
accepts, since t1 ∈ SG(A), or it reaches S and accepts by the transition q0(S) → S
from Δ1. On the other hand, for each accepting computation

t ↪→A t�−1, . . . , t2 ↪→A t1, q0(t1) →∗
Δ1

t1, where t1 ∈ CS ∪ {S},

there is a corresponding derivation starting with S ⇒ε
G t1 ⇒G t2 ⇒∗

G · · · . Hence,
we have t ∈ L(G) if and only if t ∈ L(A). �

Observe that the constructed RWWT-automaton needs at most a read/write-
window of height k = 2, because we start with a grammar in Chomsky normal
form and the applied transformations from Section 3 always preserve or even
decrease the height of the right-hand sides.

Example 4. Using the above construction we obtain the RWWT-automaton

A = (F , F ∪ {F (·, ·), F̂{1}(·)}, {q0, q1}, q0, 2, Δ),

from the growing linear context-free tree grammar of Example 2, where Δ1
contains the following top-down and final transitions for all i ∈ {0, 1}:

qi(F (x1, x2)) → F (q1(x1), q1(x2)), qi(F̂{1}(x1)) → F̂{1}(q1(x1)),
qi(f(x1, x2)) → f(q1(x1), q1(x2)), qi(s(x1)) → s(q1(x1)),

q0(a) → a, q0(S) → S.

Additionally, Δ2 contains the following rewrite transitions for all i ∈ {0, 1}:

qi(F (s(x1), s(x2))) → F (x1, x2), qi(F̂{1}(s(x1))) → F̂{1}(x1),

qi(f(s(x1), s(x2))) → F (x1, x2), qi(s(s(x1))) → F̂{1}(x1),

and qi(t) → S for all t ∈ {s(a), F̂{1}(a), F (a, a), f(a, a)}. It is easily seen that
L(A) = L(G) = {f(sn(a), sn(a)) | n ≥ 0} ∪ {sn(a) | n ≥ 0}.

The tree language L = { f(gn(hn(a)), gn(hn(a))) | n ≥ 1 } considered in
Example 3 is not context-free according to the duplication theorem of Arnold
and Dauchet [1]. Thus, we obtain the following corollary.

Corollary 1. L (lin-CFTG) ⊆ L (RWWT), and this inclusion is proper.

5 Conclusion

In Figure 1 the known inclusion results between the classes of tree languages spec-
ified by the various types of restarting tree automata and some classical families
of tree languages are depicted. We have seen that restarting tree automata with
auxiliary symbols accept all linear context-free tree languages. Thus, they are
quite expressive. However, it is currently not known whether in fact all context-
free tree languages can be accepted by restarting tree automata, or whether there

288 H. Stamer and F. Otto

L (CFTG) L (RRWWT)

L (RWWT)

��

L (lin-CFTG)

�����������

��

L (RRWT)

��

L (RWT)

��

�����������

L (RRT)

��

L (RT)

��

�����������

L (RTG)

�����������

��

Fig. 1. Inclusions between language classes defined by restarting tree automata and
language classes generated by various tree grammars. An arrow denotes a proper in-
clusion, while a dotted arrow denotes an inclusion that is not known to be proper.

exists a context-free tree language that is not accepted by any restarting tree au-
tomaton. Also it is not known whether there exists a restricted class of restarting
tree automata that accepts exactly the linear context-free tree languages.

For use in applications like verification we would need variants of restarting
tree automata for which the emptiness problem is efficiently decidable. However,
the corresponding classes of tree languages should still be closed under intersec-
tion with regular tree languages. Currently it is not known how to achieve both
these properties simultaneously.

Another possible restriction of the restarting tree automaton that the authors
currently explore is the so-called single-path restarting tree automaton, which
walks down a single path only. Of course, this model is much more limited,
because only one size-reducing rewrite is possible in each cycle, and also the
regular control is restricted to a single path only. It would be interesting to
know about the expressive power of these automata and how they relate to the
types studied in [17] and in the present paper. These are open questions that
will be addressed in our future work.

References

1. Arnold, A., Dauchet, M.: Un théorème de duplication pour les forêts algébriques.
Journal of Computer and System Sciences 13, 223–244 (1976)

2. Aho, A.V.: Indexed grammars—An extension of context-free grammars. Journal
of the ACM 15, 647–671 (1968)

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

4. Fischer, M.J.: Grammars with macro-like productions. In: IEEE Conf. Record, 9th
Ann. Symp. on Switching and Automata Theory, pp. 131–142. IEEE Computer
Society Press, Los Alamitos (1968)

Restarting Tree Automata 289

5. Fujiyoshi, A.: Restrictions on monadic context-free tree grammars. In: COLING
2004, Proc., pp. 78–84 (2004)

6. Fujiyoshi, A.: Linearity and nondeletion on monadic context-free tree grammars.
Information Processing Letters 93, 103–107 (2005)

7. Fujiyoshi, A., Kasai, T.: Spinal-formed context-free tree grammars. Theory of Com-
puting Systems 33, 59–83 (2000)

8. Guessarian, I.: Pushdown tree automata. Mathematical Systems Theory 16, 237–
263 (1983)

9. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On restarting automata with rewrit-
ing. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS,
vol. 1218, pp. 119–136. Springer, Heidelberg (1997)

10. Kepser, S., Mönnich, U.: Closure properties of linear context-free tree languages
with an application to optimality theory. Theoretical Computer Science 354, 82–97
(2006)

11. Maibaum, T.S.E.: A generalized approach to formal languages. Journal of Com-
puter and System Sciences 8, 409–439 (1974)

12. Maibaum, T.S.E.: Pumping lemmas for term languages. Journal of Computer and
System Sciences 17, 319–330 (1978)

13. Otto, F.: Restarting automata and their relations to the Chomsky hierarchy. In:
Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 55–74. Springer, Heidel-
berg (2003)

14. Rounds, W.C.: Tree-oriented proofs of some theorems on context-free and indexed
languages. In: Second Annual ACM Symp. on Theory of Computing, Proc., pp.
109–116. ACM Press, New York (1970)

15. Schimpf, K.M., Gallier, J.H.: Tree pushdown automata. Journal of Computer and
System Sciences 30, 25–40 (1985)

16. Seki, H., Kato, Y.: On the generative power of multiple context-free grammars and
macro grammars. Information Science Technical Report, NAIST-IS-TR2006007,
Nara Institute of Science and Technology (2006)

17. Stamer, H., Otto, F.: Restarting tree automata. In: van Leeuwen, J., Italiano, G.F.,
van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS,
vol. 4362, pp. 510–521. Springer, Heidelberg (2007)

18. Vijay-Shankar, K., Weir, D.J.: The equivalence of four extensions of context-free
grammars. Mathematical Systems Theory 27, 511–546 (1994)

Author Index

Albert, Jürgen 1
Anselmo, Marcella 147

Berstel, Jean 23

Castiglione, Giusi 160

Drewes, Frank 48, 172
Droste, Manfred 73

Ehrig, Hartmut 122
Ésik, Zoltan 189

Giammarresi, Dora 75
Gruska, Jozef 87

Högberg, Johanna 172

Iván, Szabolcs 189

Kalampakas, Antonios 208

Madonia, Maria 147
Maletti, Andreas 218
Matz, Oliver 112

Nikoletseas, Sotiris 236

Otto, Friedrich 275
Ouranos, Iakovos 247

Pallo, Jean-Marcel 260
Prange, Ulrike 122

Raptopoulos, Christoforos 236

Spirakis, Paul G. 236
Stamer, Heiko 275
Stefaneas, Petros 247

Tischler, German 1

Vaglica, Roberto 160

Zhang, Guo-Qiang 73

	Title Page
	Preface
	Organization
	Table of Contents
	On Generalizations of Weighted Finite Automata and Graphics Applications
	Introduction
	Finite Acceptors and Raster Images
	Inputstrings as Addresses
	Image Generation by Finite Acceptors
	Bi-level Images in 2D
	Bintrees for Addressing
	Bit-Planes for Grayscale and Colour-Images

	Weighted Finite Automata
	WFA and Polynomials
	Image- and Video-Compression with WFA

	Parametric Weighted Finite Automata
	PWFA over a Unary Alphabet
	Simulation of Iterated Function Systems
	Curves and Segments with Parametric Polynomial Representation
	Spline Curves and 3D-Patches

	Conclusions and Open Problems

	Sturmian and Episturmian Words (A Survey of Some Recent Results)
	Introduction
	Sturmian and Episturmian Words
	Complexity
	Other Complexity Functions
	Palindromic Closure
	Justin's Formula

	Sturmian Words
	Mechanical Words

	Finite Sturmian Words
	Standard and Central Words
	Characterizations of Central Words
	Directive Word and Directive Sequence

	Balance
	Lexicographic Ordering
	Burrows-Wheeler Transformation
	Sturmian Graphs

	From Tree-Based Generators to Delegation Networks
	Introduction
	Tree-Based Generators
	Signatures and Trees
	Algebras and Evaluation
	Tree-Based Generators
	TREEBAG

	Examples of Tree-Based Generators
	String Generation
	Tree Generation
	Graph Generation
	Generation of Line Drawings
	Generation of Collages
	Music Generation

	Delegation Networks
	Nondeterministic Functions and Algebras
	Evaluating Trees with Parameters in Nondeterministic Algebras
	The Definition and Semantics of Delegation Networks

	An Example
	Conclusion and Outlook

	Bifinite Chu Spaces
	Tiling Recognizable Two-Dimensional Languages
	Introduction
	Preliminaries
	Unambiguity and Determinism in Tiling Systems
	Tiling Automata

	Algebraic Methods in Quantum Informatics
	Quantum Informatics
	Basics of Quantum Information Processing
	Why Quantum Mechanics Is as It Is?
	Quantum (Finite) Automata
	Quantum Computation Primitives - Universality, Optimization
	Quantum Circuits That Can be Simulated Classically
	Quantum Algorithms Design Challenges
	Quantum Entanglement
	Quantum and Other Non-Localities
	Bell Inequalities
	Grand Challenges of Quantum Informatics

	Recognizable vs. Regular Picture Languages
	Introduction
	Picture Language Recognizability = Decoration + Locality
	Definitions
	Characterizations of Recognizable Picture Languages

	Regular Picture Languages
	Concatenation Alternation Hierarchy

	Generalizations of Regular Picture Languages
	Conclusion

	From Algebraic Graph Transformation to Adhesive HLR Categories and Systems
	Introduction to Graph Transformation
	Algebraic Graph Transformation -- The Double Pushout Approach
	Graph and Typed Graph Transformation
	Overview of Results for (Typed) Graph Transformations

	Transformations in Adhesive HLR Systems
	Conclusion

	Deterministic Two-Dimensional Languages over One-Letter Alphabet
	Introduction
	Preliminaries
	Deterministic Recognizable Languages
	Properties of DREC(1)
	DREC(1) and Some Regular Families
	Conclusions and Open Questions

	Recognizable Picture Languages and Polyominoes
	Introduction
	Polyominoes
	Recognizable Picture Languages and Polyominoes
	L_h-convex and L_v-convex polyominoes

	An Algebra for Tree-Based Music Generation
	Introduction
	Tree Generation
	An Algebra for Music
	Variations and Canons
	Conclusion
	References

	Aperiodicity in Tree Automata
	Introduction
	Aperiodicity in Tree Automata
	Aperiodicity and the Cascade Product
	Strict Containments
	Decidability and Complexity
	Aperiodicity and Logic
	A Generalization
	A Variant of Aperiodicity
	Conclusions

	The Syntactic Complexity of Eulerian Graphs
	Introduction
	Magmoids and Graphs
	Recognizability and Syntactic Complexity
	The Syntactic Complexity of Eulerian Graphs

	Learning Deterministically Recognizable Tree Series — Revisited
	Introduction
	Preliminaries
	Weighted Tree Automaton
	Learning Algorithm
	An Example
	Complexity Analysis

	The Second Eigenvalue of Random Walks On Symmetric Random Intersection Graphs
	Introduction
	Notation and Definitions
	Some Useful Properties of $G_{n, n, p}$
	Bounds for the Second Eigenvalue and the Mixing Time
	Conclusions and Future Work

	Verifying Security Protocols for Sensor Networks Using Algebraic Specification Techniques
	Introduction
	CafeOBJ and Observational Transition Systems
	CafeOBJ Basics
	Observational Transition Systems

	The SPINS Protocol Suite
	General
	Notation
	The SNEP Protocol
	The Key Agreement Protocol

	Algebraic Specifications
	SNEP Modeling
	Key Agreement Protocol Modeling

	Verification of Invariant Properties
	Proof Scores of Authentication Property
	Proof Scores of Key Agreement Property

	Conclusion

	Nonassociativity `a la Kleene
	Introduction
	Suschkewitsch Generalization of the Associative Law
	Roubaud Relative Associativity
	Notation and Definitions
	Coherence Results
	Rational Formal Power Series
	Kleene Theorem
	Generalization of the Relative Associativity
	Conclusion

	Restarting Tree Automata and Linear Context-Free Tree Languages
	Introduction
	Preliminaries
	Growing Linear Tree Grammars
	Restarting Tree Automata
	Conclusion

	Author Index

